## INSTRUCTION MANUAL AND REPLACEMENT PARTS

## DESCRIPTION

External cage type level switches are completely self-contained units designed for side mounting to a tank or vessel with threaded or flanged pipe connections. These switches have thoroughly demonstrated their worth for years in hundreds of industrial applications - particularly in the fields of petroleum refining, petro-chemical production and power generation.

## OPERATING PRINCIPLE

A permanent magnet (1) is attached to a pivoted switch actuator (2). As the float/ displacer (3) rises following the liquid level, it raises the attraction sleeve (4) into the field of the magnet, which then snaps against the non-magnetic enclosing tube (5), actuating the switch. The enclosing tube provides a static pressure boundary between the switch mechanism and the process. On a falling level, an inconel spring retracts the magnet, deactivating the switch.


## UNPACKING

Unpack the instrument carefully. Inspect all units for damage. Report any concealed damage to carrier within 24 hours. Check the contents of the packing slip and purchase order. Check and record the serial number for future reference when ordering parts.


AGENCY APPROVALS

| Agency | Approval |
| :--- | :--- |
| ATEX | II 2G EEx d II C T6, explosion proof <br> II 1G EEx ia II C T6, intrinsically safe |
| CENELEC | EEx d II C T6, explosion proof |
| FM | Class I, Div. 1, Groups C \& D <br> Class II, Div. 1, Groups E, F \& G, Type NEMA 7/9 |
| FM/CSA ${ }^{\text {® }}$ | Non-Hazardous area |
|  | Explosion proof area - <br> Groups B, C, D, E, F \& G Type NEMA 4X/7/9 |
| SAA ${ }^{\text {(1) }}$ | Explosion proof area |
| LRS | Lloyds Register of Shipment (marine applications) |
| GOST | Russian Authorisation Standards |
| Other approvals are available, consult factory for more details |  |

(1) Consult factory for proper model numbers.

A complete flanged external cage float level switch, consists of 1 order code:

1. Order code for liquid float level switches in an external cage BASIC MODEL NUMBER

| O | 3 | 0 | down to S.G. 0,84 | up to 27,6 bar $(400 \mathrm{psi})$ |
| :--- | :--- | :--- | :--- | :--- |
| B | 4 | 1 | down to S.G. 0,67 | up to $19,6 \mathrm{bar}(285 \mathrm{psi})$ |
| B | 4 | 3 | down to S.G. 0,72 | up to $27,6 \mathrm{bar}(400 \mathrm{psi})$ |
| B | 6 | 0 | down to S.G. 0,69 | up to $62 \mathrm{bar}(900 \mathrm{psi})$ |
| A | 4 | 0 | down to S.G. 0,65 | up to $51 \mathrm{bar}(740 \mathrm{psi})$ |
| G | 3 | 3 | down to S.G. 0,54 | up to $51 \mathrm{bar}(740 \mathrm{psi})$ |
| J | 3 | 1 | down to S.G. 0,50 | up to $19,6 \mathrm{bar}(285 \mathrm{psi})$ |
| J | 3 | 3 | down to S.G. 0,50 | up to $27,6 \mathrm{bar}(400 \mathrm{psi})$ |

$\min$ S.G. varies per material of construction max pressure varies per material of construction and temperature

- select as per table on left page -


Select electric switch mechanism \& enclosure for all models except B41 (see page 4 for switch ratings)

| qty and switch type |  | All models with material codes A |  |  |  |  |  |  |  |  | All models with material codes B and D |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | Weather proof (IP 66) |  | ATEX (IP 66) |  |  |  | CENELEC (IP 66) |  | FM (IP66) | Weather proof (IP 66) |  | ATEX (IP 66) |  |  |  | CENELEC (IP 66) |  | $\begin{array}{\|l\|l\|} \hline \text { FM (IP } 66) \\ \hline \text { NEMA } 7 / 9 \\ \hline \end{array}$ |
|  |  | II 2G EEx d II C T6 | 11 GGEx ia II C T6 |  | EEx d II C T6 |  |  | II 2G EExd IIC T6 |  | 11 GG EEx ia II C T6 |  | EEx d II C T6 |  |  |
|  |  | cast Aluminium | cast Aluminium |  | cast Aluminium |  | cast Iron |  | $\begin{array}{\|l\|} \hline \text { cast Alu. } \\ \hline \text { 1" NPT } \\ \hline \end{array}$ | cast Aluminium |  | cast Aluminium |  | cast Aluminium |  | cast Iron |  | $\begin{array}{\|l\|} \hline \text { NEMA 7/9 } \\ \hline \text { cast Alu. } \\ \hline \end{array}$ |  |
|  |  | M20 $\times 1,5$ | 1"NPT | M20 x 1,5 | 1" NPT | M20 $\times 1,5$ | 1" NPT | M20 $\times 1,5$ |  | 3/4" NPT |  |  | M20 $\times 1,5$ | 1" NPT | M20 1 1,5 | 1" NPT | M20 $\times 1,5$ | 1" NPT | M20 $\times 1,5$ | 3/4" NPT | 1"NPT |
|  | $1 \times$ SPDT |  |  | A2A | AAA | AKC | ACC | - | - | AK7 | AU7 | AKA | A2B | AAB | AK9 | AC9 | - | - | AK5 | AU5 | AKB |
|  | $2 \times$ SPDT | A4A | ABA | ALC | ADC | - | - | AL7 | AV7 | ALA | A4B | ABB | AL9 | AD9 | - | - | AL5 | AV5 | ALB |
|  | $3 \times$ SPDT | 36E | 3CA | 38E | 3EE | - | - | 367 | 377 | 3ME | A6B | ACB | AM9 | AE9 | - | - | A65 | A75 | AMB |
|  | $1 \times$ DPDT | A8A | ADA | ANC | AFC | - | - | AD7 | AW7 | ANA | A8B | ADB | AN9 | AF9 | - | - | AD5 | AW5 | ANB |
|  | $2 \times$ DPDT | A1A | AEA | APC | AGC | - | - | A07 | AY7 | AOA | A1B | AEB | AP9 | AG9 | - | - | A05 | AY5 | AOB |
|  | $1 \times$ SPDT | 32A | 3AA | 3KC | 3CC | - | - | 3K7 | 347 | 3KA | 32B | 3 AB | $3 \mathrm{K9}$ | $3 \mathrm{C9}$ | - | - | 3K5 | 3 U 5 | 3KB |
|  | $2 \times$ SPDT | 34E | 3BA | 39E | 3DE | - | - | 3L7 | 3V7 | 3LE | 34B | 3BB | 3L9 | 3D9 | - | - | 3L5 | 3V5 | 3LB |
|  | $3 \times$ SPDT | 36E | 3CA | 38E | 3EE | - | - | 367 | 377 | 3ME | 36B | 3СВ | 3M9 | 3E9 | - | - | 365 | 375 | 3MB |
|  | $1 \times$ DPDT | 38A | 3DA | 3NC | 3FC | - | - | 3 D 7 | 3W7 | 3NA | 38B | 3DB | 3N9 | $3 \mathrm{F9}$ | - | - | 3D5 | 3W5 | 3NB |
|  | $2 \times$ DPDT | 31A | 3EA | 3PC | 3GC | - | - | 307 | 3Y7 | 30A | 31B | 3EB | $3 \mathrm{P9}$ | 3G9 | - | - | 305 | 3Y5 | 30B |
| B | $1 \times$ SPDT | B2A | BAA | BKC | BCC | - | - | BK7 | BU7 | BKA | B2B | BAB | BK9 | BC9 | - | - | BK5 | BU5 | BKB |
|  | $2 \times$ SPDT | B4A | BBA | BLC | BDC | - | - | BL7 | BV7 | BLA | B4B | BBB | BL9 | BD9 | - | - | BL5 | BV5 | BLB |
|  | $3 \times$ SPDT | B6A | BCA | BMC | BEC | - | - | B67 | B77 | BMA | B6B | BCB | BM9 | BE9 | - | - | B65 | B75 | BMB |
|  | $1 \times$ DPDT | B8A | BDA | BNC | BFC | - | - | BD7 | BW7 | BNA | B8B | BDB | BN9 | BF9 | - | - | BD5 | BW5 | BNB |
|  | $2 \times$ DPDT | B1A | BEA | BPC | BGC | - | - | B07 | BY7 | BOA | B1B | BEB | BP9 | BG9 | - | - | B05 | BY5 | BOB |
| c | $1 \times$ SPDT | C2A | CAA | CKC | CCC | C2X | CAX | CK7 | CU7 | CKA | C2B | CAB | CK9 | CC9 | C2T | CAT | CK5 | CU5 | CKB |
|  | $2 \times$ SPDT | C4A | CBA | CLC | CDC | C4X | CBX | CL7 | CV7 | CLA | C4B | CBB | CL9 | CD9 | C4T | CBT | CL5 | CV5 | CLB |
|  | $3 \times$ SPDT | C6A | CCA | CMC | CEC | - | - | C67 | C77 | CMA | C6B | CCB | CM9 | CE9 | - | - | C65 | C75 | CMB |
|  | $1 \times$ DPDT | C8A | CDA | CNC | CFC | C8X | CDX | CD7 | CW7 | CNA | C8B | CDB | CN9 | CF9 | C8T | CDT | CD5 | CW5 | CNB |
|  | $2 \times$ DPDT | C1A | CEA | CPC | CGC | C1X | CEX | C07 | CY7 | COA | C1B | CEB | CP9 | CG9 | C1T | CET | C05 | CY5 | COB |
| D | $1 \times$ SPDT | D2B | DAB | DK9 | DC9 | - | - | DK5 | DU5 | DKB | D2B | DAB | DK9 | DC9 | - | - | DK5 | DU5 | DKB |
|  | $2 \times$ SPDT | D4B | DBB | DL9 | DD9 | - | - | DL5 | DV5 | DLB | D4B | DBB | DL9 | DD9 | - | - | DL5 | DV5 | DLB |
|  | $3 \times$ SPDT | - | - | - | - | - | - | - | - | - | D6B | DCB | DM9 | DE9 | - | - | D65 | D75 | DMB |
|  | $1 \times$ DPDT | D8B | DDB | DN9 | DF9 | - | - | DD5 | DW5 | DNB | D8B | DDB | DN9 | DF9 | - | - | DD5 | DW5 | DNB |
|  | $2 \times$ DPDT | D1B | DEB | DP9 | DG9 | - | - | D05 | DY5 | DOB | D1B | DEB | DP9 | DG9 | - | - | D05 | DY5 | DOB |
| F | $1 \times$ SPDT | FCA | FAA | FKC | FCC | - | - | FK7 | FU7 | FKA | FCB | FAB | FK9 | FC9 | - | - | FK5 | FU5 | FKB |
|  | $2 \times$ SPDT | FFA | FBA | FLC | FDC | - | - | FL7 | FV7 | FLA | FFB | FBB | FL9 | FD9 | - | - | FL5 | FV5 | FLB |
|  | $1 \times$ DPDT | FGA | FDA | FNC | FFC | - | - | FD7 | FW7 | FNA | FGB | FDB | FN9 | FF9 | - | - | FD5 | FW5 | FNB |
|  | $2 \times$ DPDT | FHA | FEA | FPC | FGC | - | - | F07 | FY7 | FOA | FHB | FEB | FP9 | FG9 | - | - | F05 | FY5 | FOB |
| HS | $1 \times$ SPDT | H7A | HM2 | HFC | HA9 | - | - | HB3 | HB4 | HM3 | H7A | HM2 | HFC | HA9 | - | - | HB3 | HB4 | HM3 |
|  | $1 \times$ DPDT | H7C | HM6 | HGC | HB9 | - | - | HB7 | HB8 | HM7 | H7C | HM6 | HGC | HB9 | - | - | HB7 | HB8 | HM7 |
| U | $1 \times$ SPDT | U2A | UAA | UKC | UCC | U2X | UAX | UK7 | UU7 | UKA | U2B | UAB | UK9 | UC9 | U2T | UAT | UK5 | UU5 | UKB |
|  | $2 \times$ SPDT | U4A | UBA | ULC | UDC | U4X | UBX | UL7 | UV7 | ULA | U4B | UBB | UL9 | UD9 | U4T | UBT | UL5 | UV5 | ULB |
|  | $3 \times$ SPDT | U6A | UCA | UMC | UEC | - | - | U67 | U77 | UMA | U6B | UCB | UM9 | UE9 | - | - | U65 | U75 | UMB |
|  | $1 \times$ DPDT | U8A | UDA | UNC | UFC | U8X | UDX | UD7 | UW7 | UNA | U8B | UDB | UN9 | UF9 | U8T | UDT | UD5 | UW5 | UNB |
|  | $2 \times$ DPDT | U1A | UEA | UPC | UGC | U1X | UEX | 407 | UY7 | UOA | U1B | UEB | UP9 | UG9 | U1T | UET | U05 | UY5 | UOB |
| V | - | - | - | - | - | VJS | VLS | - | - | - | - | - | - | - | VCS | VES | - | - | - |
| w | $1 \times$ SPDT | W2A | WAA | WKC | WCC | W2X | WAX | WK7 | WU7 | WKA | W2B | WAB | WK9 | WC9 | W2T | WAT | WK5 | WU5 | WKB |
|  | $2 \times$ SPDT | W4A | WBA | WLC | WDC | W4X | WBX | WL7 | WV7 | WLA | W4B | WBB | WL9 | WD9 | W4T | WBT | WL5 | WV5 | WLB |
|  | $3 \times$ SPDT | W6A | WCA | WMC | WEC | - | - | W67 | W77 | WMA | W6B | WCB | WM9 | WE9 | - | - | W65 | W75 | WMB |
|  | $1 \times$ DPDT | W8A | WDB | WN9 | WF9 | W8T | WDT | WD5 | WW5 | WNB | W8B | WDB | WN9 | WF9 | W8T | WDT | WD5 | WW5 | WNB |
|  | $2 \times$ DPDT | W1B | WEB | WP9 | WG9 | W1T | WET | W05 | WY5 | WOB | W1B | WEB | WP9 | WG9 | W1T | WET | W05 | WY5 | WOB |
| x | $1 \times$ SPDT | X2A | XAA | XKC | XCC | X2X | XAX | XK7 | XU7 | XKA | X2B | XAB | XK9 | XC9 | X2T | XAT | XK5 | XU5 | ХкВ |
|  | $2 \times$ SPDT | X4A | XBA | XLC | XDC | X4X | XBX | XL7 | XV7 | XLA | X4B | XBB | XL9 | XD9 | X4T | XBT | XL5 | XV5 | XLB |
|  | $3 \times$ SPDT | X6A | XCA | XMC | XEC | - | - | X67 | X77 | XMA | X6B | XCB | XM9 | XE9 | - | - | X65 | X75 | XMB |
|  | $1 \times$ DPDT | X8B | XDB | XN9 | XF9 | X8T | XDT | XD5 | XW5 | XNB | X8B | XDB | XN9 | XF9 | X8T | XDT | XD5 | XW5 | XNB |
|  | $2 \times$ DPDT | X1B | XEB | XP9 | XG9 | X1T | XET | X05 | XY5 | XOB | X1B | XEB | XP9 | XG9 | X1T | XET | X05 | XY5 | XOB |

Select electric switch mechanism \& enclosure for B41 models (see page 4 for switch ratings)

| qty and switch type |  | All models with material codes A |  |  |  |  |  |  |  |  | All models with material codes B and D |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | Weather proof (IP 66) |  | ATEX (IP 66) |  |  |  | CENELEC (IP 66) |  | $\begin{array}{\|l\|l\|} \hline \text { FM (IP 66) } \\ \hline \text { NEMA 7/9 } \\ \hline \end{array}$ | Weather proof (IP 66) |  | ATEX (IP 66) |  |  |  | CENELEC (IP 66) |  | $\begin{array}{\|l\|} \hline \text { FM (IP 66) } \\ \hline \text { NEMA 7/9 } \\ \hline \end{array}$ |
|  |  | EEx d IIC T6 | 11 1G EEx ia II C T6 |  | EEx d IIC T6 |  | $\begin{aligned} & \hline \text { EEx d IIC T6 } \\ & \text { cast Aluminium } \end{aligned}$ |  | II 1G EEx ia II C T6 |  |  |  | EEx d IIC T6 |  |  |
|  |  | cast Aluminium | cast Aluminium |  | cast Aluminium |  |  |  | cast Iron |  | $\begin{array}{\|c\|} \hline \text { NEMA 7/9 } \\ \hline \text { cast Alu. } \\ \hline \text { 1" NPT } \\ \hline \end{array}$ | cast Aluminium |  | cast Aluminium |  | cast Iron |  | $\begin{array}{\|l\|} \hline \text { NEMA } 7 / 9 \\ \hline \text { cast Alu. } \\ \hline \end{array}$ |  |
|  |  | M20 $\times 1,5$ | 1" NPT | M20 $\times 1,5$ | 1" NPT | M20 1 1,5 | 1"NPT | M20 $\times 1,5$ | 3/4" NPT |  |  | M20 1 1,5 | 1" NPT | M20 $\times 1,5$ | 1" NPT | M $20 \times 1,5$ | 1" NPT | M20 x 1,5 | 3/4" NPT | 1" NPT |
| A | $1 \times$ SPDT |  |  | A2P | AAP | AHC | AAC | - | - | AK7 | AU7 | AKP | A2Q | AAQ | AH9 | AA9 | - |  | AK5 | AU5 | AKQ |
|  | $1 \times$ DPDT | A8P | ADP | AJC | ABC | - | - | AD7 | AW7 | ANP | A8Q | ADQ | AJ9 | AB9 | - | - | AD5 | AW5 | ANQ |
| 3 | $1 \times$ SPDT | 32P | 3 AP | 3HC | 3AC | - | - | 3K7 | 307 | 3 KP | 320 | 3 AQ | 3H9 | 3A9 | - | - | 3K5 | 3 U 5 | 3KQ |
|  | $1 \times$ DPDT | 38P | 3DP | 3JC | 3BC | - | - | 3 D 7 | 3W7 | 3NP | 380 | 3DQ | 3 J 9 | $3 \mathrm{B9}$ | - | - | 3D5 | 3W5 | 3NQ |
| B | $1 \times$ SPDT | B2P | BAP | BHC | BAC | - | - | BK7 | BU7 | BKP | B2Q | BAQ | BH9 | BA9 | - | - | BK5 | BU5 | BKQ |
|  | $1 \times$ DPDT | B8P | BDP | BJC | BBC | - | - | BD7 | BW7 | BNP | B8Q | BDQ | BJ9 | BB9 | - | - | BD5 | BW5 | BNQ |
| C | $1 \times$ SPDT | C2P | CAP | CHC | CAC | C2L | CAL | CK7 | CU7 | CKP | C20 | CAQ | CH9 | CA9 | C2S | CAS | CK5 | CU5 | CKQ |
|  | $1 \times$ DPDT | C8P | CDP | CJC | CBC | C8L | CDL | CD7 | CW7 | CNP | C8Q | CDQ | CJ9 | CB9 | C8S | CDS | CD5 | CW5 | CNQ |
| D | $1 \times$ SPDT | - | - | - | - | - | - | - | - | - | D20 | DAQ | DH9 | DA9 | - | - | DK5 | DU5 | DKQ |
|  | $1 \times$ DPDT | - | - | - | - | - | - | - | - | - | D8Q | DDQ | DJ9 | DB9 | - | - | DD5 | DW5 | DNQ |
| F | $1 \times$ SPDT | F2P | FAP | FHC | FAC | - | - | FK7 | FU7 | FKP | F20 | FAQ | FH9 | FA9 | - | - | FK5 | FU5 | FKQ |
|  | $1 \times$ DPDT | F8P | FDP | FJC | FBC | - | - | FD7 | FW7 | FNP | F8Q | FDQ | FJ9 | FB9 | - | - | FD5 | FW5 | FNQ |
| HS | $1 \times$ SPDT | - | - | - | - | - | - | - | - | - | H7A | HM2 | HFC | HA9 | - | - | HB3 | HB4 | HM3 |
|  | $1 \times$ DPDT | - | - | - | - | - | - | - | - | - | H7C | HM6 | HGC | HB9 | - | - | HB7 | HB8 | HM7 |
| u | $1 \times$ SPDT | U2P | UAP | UHC | UAC | U2L | UAL | UK7 | UU7 | UKP | U2Q | UAQ | UH9 | UA9 | U2S | UAS | UK5 | UU5 | UKQ |
|  | $1 \times$ DPDT | U8P | UDP | UJC | UBC | U8L | UDL | UD7 | UW7 | UNP | U80 | UDQ | UJ9 | UB9 | U8S | UDS | UD5 | UW5 | UNQ |
| V | - | - | - | - | - | VFS | VHS | - | - | - | - | - | - | - | V5S | VBS | - | - | - |
| w | $1 \times$ SPDT | W2P | WAP | WHC | WAC | W2L | WAL | WK7 | WU7 | WKP | W2Q | WAQ | WH9 | WA9 | W2S | WAS | WK5 | WU5 | WKQ |
|  | $1 \times$ DPDT | - | - | - | - | - | - | - | - | - | W8Q | WDQ | W.J9 | WB9 | W8S | WDS | WD5 | WW5 | WNQ |
| x | $1 \times$ SPDT | X2P | XAP | XHC | XAC | X2L | XAL | XK7 | XU7 | XKP | X20 | XAQ | XH9 | XA9 | X2S | XAS | XK5 | XU5 | XKQ |
|  | $1 \times$ DPDT | - | - | - | - | - | - | - | - | - | X8Q | XDQ | XJ9 | XB9 | X8S | XDS | XD5 | XW5 | XNQ |

## INSTALLATION

## CRITICAL ALARM FUNCTION

It is recommended that for critical alarm functions, an additional level switch be installed as a high-high or low-low level alarm for maximum protection.

## PIPING

Figure 3 shows a typical piping installation of a Magnetrol float cage control to a vessel or boiler. Level decals on control identify the actuation levels for a unit with three switches at minimum specific gravity. Refer to the Actuation Level charts for the actuation levels for a unit with one switch at different minimum specific gravities.
Use pipe of sufficient strength to support the control. If necessary, provide a stand or hanger to help support its weight. All piping should be straight and free of "low spots" or "pockets" so that lower liquid line will drain towards the vessel and upper vapor line will drain toward the control. Shut-off valves are recommended for installation between the vessel and the control. If control is to be used with a low temperature liquid (one which will "boil" in the float chamber if outside heat is absorbed), the chamber and piping should be insulated. Such boiling in the chamber will cause false level indications. DO NOT INSULATE SWITCH MECHANISM HOUSING.
On controls equipped with pneumatic switch assemblies, consult bulletin on mechanism furnished for air (or gas) piping instructions. Refer to chart below for bulletin numbers for pneumatic switches.

## MOUNTING

Adjust piping as required to bring control to a vertical position. Magnetrol controls must be mounted within three degrees $\left(3^{\circ}\right)$ of vertical. A three degree slant is noticeable by eye, but installation should be checked with a spirit level on top and/or sides of float chamber.


Figure 3

Controls should be mounted as close to the vessel as possible. This will result in a more responsive and accurate level change in the control. Liquid in a long line may be cooler and more dense than liquid in the vessel causing lower level indication in the control than actual level in the vessel.

## AVAILABLE SWITCH MECHANISMS

| Type of switch module ${ }^{(1)}$ | Max. Process Temp. ${ }^{(2)}$ | Switch ratings - A res. ${ }^{(3)}$ |  |  | Code |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | 24 V DC | 240 V AC | 120 V AC |  |
| Micro switch | $\max 120^{\circ} \mathrm{C}\left(250{ }^{\circ} \mathrm{F}\right)$ | 6 | 15 | 15 | B |
| Micro switch | max $230{ }^{\circ} \mathrm{C}\left(450{ }^{\circ} \mathrm{F}\right)$ | 10 | 15 | 15 | C |
| Micro switch - DC current | max $120^{\circ} \mathrm{C}\left(250{ }^{\circ} \mathrm{F}\right)$ | 10 | - | 10 | D |
| Micro switch with gold alloy contacts | $\max 120^{\circ} \mathrm{C}\left(250{ }^{\circ} \mathrm{F}\right)$ | 1 | - | 1 | U |
| Hermetically sealed micro switch | $\max 290^{\circ} \mathrm{C}\left(500^{\circ} \mathrm{F}\right)$ | 5 | 5 | 5 | HS ${ }^{(4)}$ |
| Hermetically sealed micro switch with silver plated contacts | max $230{ }^{\circ} \mathrm{C}\left(450{ }^{\circ} \mathrm{F}\right)$ | 3 | 1 | 1 | W |
| Hermetically sealed micro switch with gold plated contacts | max $230^{\circ} \mathrm{C}\left(450{ }^{\circ} \mathrm{F}\right)$ | 0,5 | 0,5 | 0,5 | X |
| Hermetically sealed micro switch | $\max 400^{\circ} \mathrm{C}\left(750{ }^{\circ} \mathrm{F}\right)$ | 4 | - | 2,5 | F |
| Proximity switch - type SJ 3.5 SN | max $100^{\circ} \mathrm{C}\left(210^{\circ} \mathrm{F}\right)$ | NA | NA | NA | V |
| Mercury switch | max $290{ }^{\circ} \mathrm{C}\left(500{ }^{\circ} \mathrm{F}\right)$ | 10 | 6,5 | 13 | A |
| Mercury switch | $\max 400^{\circ} \mathrm{C}\left(750{ }^{\circ} \mathrm{F}\right)$ | 10 | 6,5 | 13 | 3 |
| Pneumatic bleed type (open air) | $\max 200^{\circ} \mathrm{C}\left(400{ }^{\circ} \mathrm{F}\right)$ | NA | NA | NA | J |
| Pneumatic non bleed type (closed circuit) | max $200{ }^{\circ} \mathrm{C}\left(400{ }^{\circ} \mathrm{F}\right)$ | NA | NA | NA | K |

${ }^{(1)}$ For applications with heavy vibration, consult factory for suited switch modules.
Max process temperature is specified at $40^{\circ} \mathrm{C}\left(100^{\circ} \mathrm{F}\right)$ ambient temperature and for non condensing applications.
For more details - see bulletin BE 42-120.
(4) For condensing applications, max process temperature is down-rated to $200^{\circ} \mathrm{C}\left(400^{\circ} \mathrm{F}\right) @ 40^{\circ} \mathrm{C}\left(100^{\circ} \mathrm{F}\right)$ ambient.

## WIRING

Most mechanical control switch housings are designed to allow $360^{\circ}$ positioning of the cable entries by loosening the set screw(s). See figure 4. On high temperature applications (above $120^{\circ} \mathrm{C}\left[250^{\circ} \mathrm{F}\right]$ ), high temperature wire should be used between control and first junction box located in a cooler area.

1. To gain access to switch mechanism(s) remove switch housing cover.
2. Pull in supply wires (conductors), wrap them around enclosing tube under the baffle plate and connect to proper terminals. Be certain that excess wire does not interfere with "tilt" of switch and that adequate clearance exists for replacement of switch housing cover.

NOTE: See bulletin on switch mechanism furnished with your control (as listed below) for proper connections.
3. Connect power supply to control and test switch action by varying liquid level in tank or vessel.

## CAUTION:

In hazardous area, do not power the unit until the cable gland is sealed and the enclosure cover is screwed down securely.

NOTE: If switch mechanism fails to function properly, check vertical alignment of control housing and consult installation instructions in switch mechanism bulletin.
4. Replace switch housing cover and place control into service.
NOTE: If control has been furnished with an explosion proof (cast) or moisture proof (gasketed) switch housing, check the following:

- After wiring connections have been completed, housings must be sealed via the propre cable gland to prevent entrance of air.
- Check cover to base fit, to be certain gasketed joint is tight. A positive seal is necessary to prevent infiltration of moisture laden air or corrosive gases into switch housing.

| Switch mechanism | Bulletin | Reference series |
| :--- | :---: | :---: |
| Mercury switches | $42-783$ | A |
| Dry contact switches | $42-683$ | B, C, D, U, W, X |
| Anti-vibration mercury switches |  | E |
| Anti-vibration dry contact switches | $42-684$ | G, H, I |
| Bleed type pneumatic valve | $42-685$ | J |
| Non-bleed type pneumatic valve | $42-686$ | K |

OBSERVE ALL APPLICABLE ELECTRICAL CODES AND PROPER WIRING PROCEDURES

## Weatherproo <br> ATEX

 FM

Figure 4a

## NEMA 7/9 <br> CAST IRON



Figure 4b

CENELEC


Figure 4c

## CAUTION:

- DO NOT attempt to reposition NEMA 4 / NEMA 7/9 housings without loosening the set screws; CENELEC housings MAY NOT BE REPOSITIONNED. ALWAYS retighten set screw(s) after repositionning.
- DO NOT attempt to unscrew cover of CENELEC housings before loosening locking screw in base of housing. ALWAYS retighten locking screw after replacing cover.


## PREVENTIVE MAINTENANCE

Periodic inspections are a necessary means to keep your Magnetrol level control in good working order. This control is, in reality, a safety device to protect the valuable equipment it serves. Therefore, a systematic program of "preventive maintenance" should be implemented when control is placed into service. If the following sections on "what to do" and "what to avoid" are observed, your control will provide reliable protection of your capital equipment for many years.

## WHAT TO DO

## 1. Keep control clean

NEVER leave switch housing cover off the control. This cover is designed to keep dust and dirt from interfering with switch mechanism operation. In addition, it protects against damaging moisture and acts as a safety feature by keeping bare wires and terminals from being exposed. Should the housing cover become damaged or misplaced, order a replacement immediately.
2. Inspect switch mechanisms, terminals and connections monthly.

- Mercury switches may be visually inspected for short circuit damage. Check for small cracks in the glass tube containing the mercury. Such cracks can allow entrance of air into the tube causing the mercury to "oxidize". This is noticeable as the mercury will appear dirty and have a tendency to "string out" like water, instead of breaking into round pools. If these conditions exist, replace the mercury switch immediately.
- Dry contact switches should be inspected for excessive wear on actuating lever or misalignment of adjusting screw at point of contact between screw and lever. Such wear can cause false switch actuating levels. Adjust switch mechanism to compensate (if possible) or replace switch.
Do NOT operate your control with defective or maladjusted switch mechanisms (refer to bulletin on switch mechanism furnished for service instructions).
- Magnetrol controls may sometimes be exposed to excessive heat or moisture. Under such conditions, insulation on electrical wires may become brittle, eventually breaking or peeling away. The resulting "bare" wires can cause short circuits.
Check wiring carefully and replace at first sign of brittle insulation.
- Vibration may sometimes cause terminal screws to work loose. Check all terminal connections to be certain that screws are tight. Air (or gas) operating medium lines subjected to vibration may eventually crack or become loose at connections causing leakage. Check lines and connections carefully and repair or replace, if necessary.
- On units with pneumatic switches, air (or gas) operating medium lines subjected to vibration, may eventually crack or become loose at connections carefully and repair or replace, if necessary.

NOTE: As a matter of good practice, spare switches should be kept on hand at all times.

## 3. Inspect entire unit periodically

Isolate control from vessel. Raise and lower liquid level to check for switch contact and reset.

## WHAT TO AVOID

1. NEVER leave switch housing cover off the control longer than necessary to make routine inspections.
2. NEVER use lubricants on pivots of switch mechanisms. A sufficient amount of lubricant has been applied at the factory to insure a lifetime of service. Further oiling is unnecessary and will only tend to attract dust and dirt which can interfere with mechanism operation.
3. NEVER place a jumper wire across terminals to "cutout" the control. If a "jumper" is necessary for test purposes, be certain it is removed before placing control into service.
4. NEVER attempt to make adjustments or replace switches without reading instructions carefully. Certain adjustments provided for in Magnetrol controls should not be attempted in the field. When in doubt, consult the factory or your local Magnetrol representative.

## TROUBLESHOOTING

Usually the first indication of improper operation is failure of the controlled equipment to function, i.e.: pump will not start (or stop), signal lamps fail to light, etc. When these symptoms occur, whether at time of installation or during routine service thereafter, check the following potential external causes first.

- Fuses may be blown.
- Reset button(s)
- Power switch may be open
- Controlled equipment may be faulty.
- Wiring leading to control may be defective.

If a thorough inspection of these possible conditions fails to locate the trouble, proceed next to a check of the control's switch mechanism.

## CHECK SWITCH MECHANISM

1. Pull disconnect switch or otherwise disconnect power to the control.
2. Remove switch housing cover.
3. Disconnect power wiring from switch assembly.
4. Swing magnet assembly in and out by hand to check carefully for any sign of binding. Assembly should require minimal force to move it through its full swing.
5. If binding exists, magnet may be rubbing enclosing tube. If magnet is rubbing, loosen magnet clamp screw and shift magnet position. Retighten magnet clamp screw.
6. If switch magnet assembly swings freely and mechanism still fails to actuate, check installation of control to be certain it is within the specified three $\left(3^{\circ}\right)$ degrees of vertical (Use spirit level on side of enclosing tube in two place, $90^{\circ}$ apart. Refer to Figure 3 on page 4).
7. If mechanism is equipped with a mercury switch, examine glass mercury tube closely as previously described in "Preventive Maintenance" section. If switch is damaged, replace it immediately.
8. If switch mechanism is operating satisfactorily, proceed to check sensing unit.

## CHECK SENSING UNIT

1. Check to be certain liquid is entering float chamber. A valve may be closed or piping plugged.
2. Proceed to check level sensing action by removing switch housing assembly, as described in Steps 4 through 7 of the "Switch Differential Adjustment" section on Page 8.

[^0]3. Inspect attraction sleeve(s) and inside of enclosing tube for excessive corrosion or solids build-up which could restrict movement, preventing sleeve(s) from reaching field of magnet(s).
4. If the differential has been changed in the field, check tightness and position of the jam nuts.

NOTE: Differential adjustment causes a change in the amount of level travel between "switch-on" and "switch-off" actuations. Refer to Page 8.
5. Fill chamber with liquid at room pressure. Check float(s) to be certain it is buoyant in the liquid (float chamber must have adequate liquid level). If float is determined to be filled with liquid or collapsed, entire float chamber assembly (sensing unit) should be replaced.

## CHECK COMPLETE UNIT

Reassemble unit. Reconnect power supply and carefully actuate switch mechanism manually (using a non-conductive tool) to determine whether controlled equipment will operate.

> CAUTION:
> With electrical power "on", care should be taken to avoid contact with switch leads and connections at terminal block.

If all components in the control are in operating condition the trouble must be (and should be) located external to the control. Repeat inspection of external conditions previously described.

NOTE: If difficulties are encountered which can not be identified, consult with the factory or your local representative for assistance. A complete description of the trouble should be provided along with information concerning your piping and mounting arrangement, plus a description of your operation sequence. Sketches or photographs showing the installation are also beneficial.
When communicating about your control, be certain always to specify the complete Model and Serial numbers.

## SWITCH DIFFERENTIAL ADJUSTMENT



The amount of level travel between switch-on and switchoff actuations (differential) may be field adjusted by repositioning the lower jam nuts on the float stem. The standard factory setting is for a minimum amount of play (gap) between the top jam nuts and the attraction sleeve, as shown in Figure 5. This setting may be increased to a maximum of 0.50" (13 mm), as shown in Figure 6.

NOTE: For assistance in computing level differential change for a specific control, consult the factory giving the model and serial numbers of the control.

With level change specifications determined, proceed as follows:

CAUTION: Before attempting any work on the control, pull disconnect switch, or otherwise assure that electrical circuit(s) through the control is deactivated. Close operating medium supply valve on controls equipped with pneumatic switch mechanisms.

1. Disconnect wiring from supply side of switch mechanism(s) and electrical conduit or operating medium line connections to switch housing.
2. Perform system shutdown as required to relieve pressure from float chamber of control and allow unit to cool.

NOTE: Control chamber, connections, or pipe lines need not be removed from vessel or boiler.
3. Remove switch housing assembly by loosening hex nut, which is located immediately below housing base (refer to Figure 8).
4. With switch housing removed, jam nuts and attraction sleeve are accessible. Measure position of upper jam nuts from stem end; then loosen and remove upper jam nuts, guide washer, and attraction sleeve.
5. Loosen and adjust lower jam nuts to desired position. Make certain jam nuts are retightened securely.

NOTE: Use new gasket in assembly of switch housing to chamber.
6. Test switch actuation by varying liquid level in float chamber.

## REPLACEMENT OF STANDARD FLOAT AND STEM ASSEMBLY

1. Disconnect wiring or medium lines from control and perform system shutdown as previously described in Troubleshooting and Differential Adjustment Sections.
2. Remove switch housing assembly from float chamber at head flange.
3. Remove sleeve stop strap from the underside of the head flange and slide the float stem assembly out of the enclosing tube.

NOTE: New float and stem kits are supplied unassembled. Refer to standard lower jam nut settings chart (below) and to Figure 7 for dimension A .
4. Check new float and stem assembly to be certain it is the correct replacement unit:
a. Float should be of same physical size and shape.
b. Stem length should match closely.
c. Set attraction sleeve per dimension $A$ as shown in the chart below.

NOTE: If differential adjustment has been altered in the field, disregard dimension A and readjust new assembly to the previously determined level differential settings per instructions on page 8.
5. Replace new float and stem assembly into head flange and install new stop strap with screws included.
6. Remount head flange on float chamber, using new gasket provided. Tighten flange nuts evenly, using an alternating pattern typical of standard industry practice.


Figure 7

NOTE: Care must be taken during installation to be certain float stem does not become bent.
7. With control assembly in place, test switch actuation by varying liquid level in float chamber.

## STANDARD LOWER JAM NUT SETTINGS

| Model | Dimension A |  |
| :---: | :---: | :---: |
|  | $\mathbf{m m}$ | inches |
| B24, C24, A40, B41, B43, <br> J31, J33, G33, B60, O30 | 51 | 2 |



Figure 8

REPLACEMENT PARTS

| No. | Description |  | Standard Replacement Assembly Kits |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  | $\begin{gathered} \mathrm{B} 24 \\ \text { C24 } \\ \text { (1) } \end{gathered}$ | A40 <br> (1) | B41 | B43 | J31 | J33 | G33 | B60 | 030 |
| 1 | Housing cover | Housing | Refer to Bulletin 42-683 for Switch Housing Cover and Base Assemblies |  |  |  |  |  |  |  |  |
| 2 | Housing base | Kits |  |  |  |  |  |  |  |  |  |
| 3 | Switch mechanism | - | Refer to bulletin on Switch Mechanism Furnished (listed on page 3) |  |  |  |  |  |  |  |  |
| 4 | Enclosing tube | - | See table below |  |  |  |  |  |  |  |  |
| 5 | E -Tube gasket | - | $\begin{gathered} 12- \\ 1204- \\ 001 \end{gathered}$ | 12-1301-002 |  |  |  |  |  | $\begin{gathered} 12- \\ 1204- \\ 001 \end{gathered}$ | $\begin{gathered} 12- \\ 1301- \\ 002 \end{gathered}$ |
| 6 | Head flange | Head <br> Flange <br> Kits | $\begin{gathered} 89- \\ 4201- \\ 001 \end{gathered}$ | Consult Factory |  |  |  |  |  |  |  |
| 7 | Studs/Bolts |  |  |  |  |  |  |  |  |  |  |
| 8 | Hex nuts |  |  |  |  |  |  |  |  |  |  |
| 9 | Flange gasket |  |  |  |  |  |  |  |  |  |  |
| 7 | Studs/Bolts | Float Chamber Kits | $\begin{gathered} \hline 89- \\ 4601- \\ 001 \end{gathered}$ | Consult Factory |  |  |  |  |  |  |  |
| 8 | Hex nuts |  |  |  |  |  |  |  |  |  |  |
| 9 | Flange gasket |  |  |  |  |  |  |  |  |  |  |
| 10 | Float Chamber |  |  |  |  |  |  |  |  |  |  |
| 9 | Flange gasket | Float and Stem Kits | $\begin{gathered} 89- \\ 3201- \\ 001 \\ 1 \end{gathered}$ | Consult Factory |  |  |  |  |  |  |  |
| 11 | Stop Strap |  |  |  |  |  |  |  |  |  |  |
| 12 | Screws |  |  |  |  |  |  |  |  |  |  |
| 13 | Float and stem assembly |  |  |  |  |  |  |  |  |  |  |
| 14 | Jam nuts |  |  |  |  |  |  |  |  |  |  |
| 15 | Guide washer |  |  |  |  |  |  |  |  |  |  |
| 16 | Attraction sleeve |  |  |  |  |  |  |  |  |  |  |
| 17 | Stop tube (if used) |  |  |  |  |  |  |  |  |  |  |
| 18 | Chamber liner (1) | - | $\begin{gathered} \hline \text { B24 } \\ \text { 05- } \\ 5524- \\ 001 \end{gathered}$ | Consult Factory |  |  |  |  |  |  |  |
| 9 | Flange gasket | - | $\begin{gathered} 12- \\ 1301- \\ 003 \end{gathered}$ | $\begin{gathered} 12- \\ 1301- \\ 015 \end{gathered}$ | $\begin{gathered} 12- \\ 1301- \\ 014 \end{gathered}$ | $\begin{gathered} 12- \\ 1301- \\ 015 \end{gathered}$ | $\begin{gathered} 12- \\ 1301- \\ 009 \end{gathered}$ |  | 006 | $\begin{gathered} 12- \\ 1204- \\ 015 \end{gathered}$ | $\begin{gathered} \hline 12- \\ 1301- \\ 018 \end{gathered}$ |
| Complete Control Less Float Chamber, Bolts, and Nuts |  |  | $\begin{gathered} \hline 89- \\ 6564- \\ 003 \text { (2) } \end{gathered}$ | Consult Factory |  |  |  |  |  |  |  |


|  |  |  | Models with mat'l code A \& B | Models with mat'l code D |
| :---: | :---: | :---: | :---: | :---: |
| 4 | Enclosing Tube | Cast aluminium housing | $\begin{gathered} \text { 032-6302-033 } \\ \text { 032-6302-031 (B/C } 24 \text { \& B 41) } \end{gathered}$ | $\begin{gathered} 032-6302-037 \\ 032-6302-036 \text { (В 41) } \end{gathered}$ |
|  |  | Cast iron housing | 032-6344-002 | 032-6344-001 |
|  |  | Pneumatic switch housing | 032-6302-031 | 032-6302-036 |

## Notes:

(1) Cast float cage models used on boiler service require brass chamber liner. Refer to bulletin 46-625 for replacement instructions.
(2) Furnished with one Series A, SPDT Mercury Switch and standard switch housing.

## IMPORTANT:

When ordering, please specify:
A. Model and serial number of control.
B. Replacement assembly (kit) part number.

## DESCRIPTION

Models with tandem style floats are used on applications where widely spaced high and low switching functions can be accomplished with a single control. The units incorporate two floats which operate independently, and are arranged so that the lower float actuates the upper switch mechanism, and the upper float actuates the lower switch mechanism. The upper float is attached to the lower attraction sleeve by means of a hollow stem. The lower float attaches to the upper attraction sleeve with a solid stem that extends upward, through the upper float and stem assembly.

## INSTALLATION, PREVENTATIVE MAINTENANCE, AND TROUBLESHOOTING

Installation and maintenance of tandem float models is accomplished in much the same manner as for standard models previously described. Some additional consideration must be given to the piping arrangement to allow for alignment of the two switch actuating level marks on the float chamber with the desired levels in the vessel or boiler. When troubleshooting the level sensing portion of the control, additional checks may be made of the following:

1. Inspect for binding of solid (lower) float stem within hollow (upper) float stem due to corrosion or possible damage incurred during shipment or previous maintenance.
2. Make certain that retaining (snap) rings, used to locate lower attraction sleeve, are locked in place. An extreme shock or hammer, such as during blow-down on a water column boiler control, may have damaged a ring causing it to snap out of its retaining groove in the hollow (upper) float stem.

## DIFFERENTIAL ADJUSTMENT

CAUTION: No differential adjustment should be made on tandem float models in the field. Switch actuation levels have been set at the factory to meet specific customer specifications. Variations in actual conditions, from design conditions, usually require special control modifications. Consult factory or local representative for assistance.

## REPLACEMENT OF FLOAT AND STEM ASSEMBLIES

Should replacement of either upper or lower float and stem assembly be required, instructions previously given for standard units (page 9) may be followed with additional consideration as follows:

1. New float and stem assemblies are available in separate replacement kits, with attraction sleeve parts furnished loose, to allow for field assembly with existing serviceable components. Consult factory.
2. Dimension $A$, referred to in standard instructions, must be arrived at by direct measurement from old assembly.

NOTE: Disregard dimension A figures shown in chart on page 9 . If in doubt, or unable to get an accurate measurement from old assembly, consult factory or local representative for assistance.
3. Lower attraction sleeve locks in place on hollow (upper) float stem with external type snap rings. Care must be taken to be certain rings are properly installed. If available, use the correct type external snap ring pliers.


NOTE: Model shown has fabricated steel float cage; models W25 and W24 have cast iron float cage.

- Only A40 Model -


- All models except A40 -




| Housing type | Models | V |  | W |  | ø X |  | Y |  | Z |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | mm | inches | mm | inches | mm | inches | mm | inches |  |
| WeatherproofFM (NEMA 7/9) ATEX (Cast Alu) | B73/B41 with HS-switch All other models | 257 | 10.12 | 42 | 1.66 | 151 | 5.93 | 109 | 4.29 | M20 x 1,5 (*) or 1" NPT <br> (2 entries - 1 plugged) |
|  | B73/B41 excl. HS-switch | 202 | 7.94 |  |  |  |  |  |  | (*) not for FM (NEMA 7/9) |
| CENELEC (Cast Iron) | All | 249 | 9.80 | 45 | 1.77 | 143 | 5.63 | 110 | 4.33 | M20 x 1,5 or $3 / 4$ " NPT (single entry - 2 entries at request) |
| Pneumatics Switch Module J | All | 165 | 6.50 | 39 | 1.54 | 118 | 4.65 | 110 | 4.33 | 1/4" NPT |
| Pneumatics Switch Module K |  |  |  |  |  |  |  | 130 | 5.12 |  |

Allow 200 mm (7.87") overhead clearance / All housings are $360^{\circ}$ rotatable

## ACTUATING LEVELS

Actuating levels shown are for single switch units at minimum specific gravity only. Levels will change for multistage units. Consult factory for these units.


NPT \& Socket weld


Upper side/bottom


Side/side

FLANGED CAGE MODEL DIMENSIONAL SPECIFICATIONS in mm (inches)

| Process connection size | Mounting configuration | Model | Dimensions |  |  |  |  |  | Model | Dimensions |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  | A |  | B |  | C |  |  | A |  | B |  | C |  |
|  |  |  | mm | inches | mm | inches | mm | inches |  | mm | inches | mm | inches | mm | inches |
| 1" - DN 25 | threaded / socket welded | A40 (*) | 222 | 8.74 | 82 | 3.23 | 391 | 15.39 | B60 (*) | 250 | 9.84 | 96 | 3.78 | 408 | 16.06 |
|  | flanged upper side / bottom |  | 356 | 14 | 185 | 7.28 | 525 | 20.67 |  | 356 | 14 | 200 | 7.87 | 514 | 20.24 |
|  | flanged side/side |  | 356 | 14 | 185 | 7.28 | 525 | 20.67 |  | 356 | 14 | 200 | 7.87 | 514 | 20.24 |
| 11/2" - DN 40 | threaded / socket welded |  | 222 | 8.74 | 94 | 3.70 | 391 | 15.39 |  | 260 | 10.24 | 107 | 4.21 | 418 | 16.46 |
|  | flanged upper side / bottom |  | 356 | 14 | 200 | 7.87 | 525 | 20.67 |  | 356 | 14 | 215 | 8.46 | 514 | 20.24 |
|  | flanged side/side |  | 356 | 14 | 200 | 7.87 | 525 | 20.67 |  | 356 | 14 | 215 | 8.46 | 514 | 20.24 |
| 2" - DN 50 | threaded / socket welded |  | 222 | 8.74 | 97 | 3.82 | 391 | 15.39 |  | 262 | 10.31 | 110 | 4.33 | 420 | 16.54 |
|  | flanged upper side / bottom |  | 356 | 14 | 200 | 7.87 | 525 | 20.67 |  | 356 | 14 | 220 | 8.66 | 514 | 20.24 |
|  | flanged side/side |  | 356 | 14 | 200 | 7.87 | 525 | 20.67 |  | 356 | 14 | 220 | 8.66 | 514 | 20.24 |


| 1" - DN 25 | threaded / socket welded | B41 | 250 | 9.84 | 82 | 3.23 | 411 | 16.18 | B43 (*) | 250 | 9.84 | 82 | 3.23 | 419 | 16.50 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | flanged upper side / bottom |  | 356 | 14 | 185 | 7.28 | 517 | 20.35 |  | 356 | 14 | 185 | 7.28 | 525 | 20.67 |
|  | flanged side/side |  | 356 | 14 | 185 | 7.28 | 517 | 20.35 |  | 356 | 14 | 185 | 7.28 | 525 | 20.67 |
| 11/2" - DN 40 | threaded / socket welded |  | 260 | 10.24 | 94 | 3.70 | 421 | 16.57 |  | 260 | 10.24 | 94 | 3.70 | 429 | 16.89 |
|  | flanged upper side / bottom |  | 381 | 15 | 200 | 7.87 | 542 | 21.34 |  | 381 | 15 | 200 | 7.87 | 550 | 21.65 |
|  | flanged side/side |  | 356 | 14 | 200 | 7.87 | 517 | 20.35 |  | 356 | 14 | 200 | 7.87 | 525 | 20.67 |
| 2" - DN 50 | threaded / socket welded |  | 261 | 10.28 | 97 | 3.82 | 422 | 16.61 |  | 261 | 10.28 | 97 | 3.82 | 430 | 16.93 |
|  | flanged upper side / bottom |  | 381 | 15 | 200 | 7.87 | 542 | 21.34 |  | 381 | 15 | 200 | 7.87 | 550 | 21.65 |
|  | flanged side/side |  | 381 | 15 | 200 | 7.87 | 542 | 21.34 |  | 381 | 15 | 200 | 7.87 | 550 | 21.65 |


| 1" - DN 25 | threaded / socket welded | $\begin{aligned} & \text { G33 } \\ & \text { J33 } \end{aligned}$ | 250 | 9.84 | 109 | 4.29 | 429 | 16.89 | J31 (*) | 250 | 9.84 | 109 | 4.29 | 418 | 16.46 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | flanged upper side / bottom |  | 356 | 14 | 215 | 8.46 | 535 | 21.06 |  | 356 | 14 | 215 | 8.46 | 524 | 20.63 |
|  | flanged side/side |  | 356 | 14 | 215 | 8.46 | 535 | 21.06 |  | 356 | 14 | 215 | 8.46 | 524 | 20.63 |
| $11 / 2^{\prime \prime}$ - DN 40 | threaded / socket welded |  | 261 | 10.28 | 121 | 4.76 | 440 | 17.32 |  | 261 | 10.28 | 121 | 4.76 | 429 | 16.89 |
|  | flanged upper side / bottom |  | 381 | 15 | 230 | 9.06 | 560 | 22.05 |  | 381 | 15 | 230 | 9.06 | 549 | 21.61 |
|  | flanged side/side |  | 356 | 14 | 230 | 9.06 | 535 | 21.06 |  | 356 | 14 | 230 | 9.06 | 524 | 20.63 |
| 2" - DN 50 | threaded / socket welded |  | 262 | 10.31 | 124 | 4.88 | 441 | 17.36 |  | 262 | 10.31 | 124 | 4.88 | 430 | 16.93 |
|  | flanged upper side / bottom |  | 381 | 15 | 235 | 9.25 | 560 | 22.05 |  | 381 | 15 | 235 | 9.25 | 549 | 21.61 |
|  | flanged side/side |  | 381 | 15 | 235 | 9.25 | 560 | 22.05 |  | 381 | 15 | 235 | 9.25 | 549 | 21.61 |


| 1" - DN 25 | threaded / socket welded | 030 (*) | 222 | 8.74 | 70 | 2.76 | 353 | 13.90 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | flanged upper side / bottom |  | 356 | 14.02 | 165 | 6.50 | 487 | 19.17 |
|  | flanged side/side |  | 356 | 14.02 | 165 | 6.50 | 487 | 19.17 |

(*) Add $33 \mathrm{~mm}(1.30$ ") to C-dimension for cast iron EEx d II C T6 housings.

Actuation levels in mm (inches) for minimum specific gravity and as per selected material of construction (see selection data)

| Model | 1" / DN 25 |  |  |  | 11/2" / DN 40 |  |  |  | 2" / DN 50 |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | Material code A |  | Material code B \& D |  | Material code A |  | Material code B \& D |  | Material code A |  | Material code B \& D |  |
|  | High Level (HL) | Low Level (LL) |
| A40 | 34 (1.34) | 56 (2.20) | 32 (1.26) | 59 (2.32) | 34 (1.34) | 56 (2.20) | 32 (1.26) | 59 (2.32) | 34 (1.34) | 56 (2.20) | 32 (1.26) | 59 (2.32) |
| B41 | 23 (0.91) | 45 (1.77) | 25 (0.98) | 51 (2.01) | 23 (0.91) | 45 (1.77) | 25 (0.98) | 51 (2.01) | 23 (0.91) | 45 (1.77) | 25 (0.98) | 51 (2.01) |
| B43 | 53 (2.09) | 77 (3.03) | 60 (2.36) | 90 (3.54) | 46 (1.81) | 70 (2.76) | 53 (2.09) | 83 (3.27) | 38 (1.50) | 62 (2.44) | 45 (1.77) | 75 (2.95) |
| B60 | 76 (2.99) | 94 (3.70) | 81 (3.19) | 102 (4.02) | 57 (2.24) | 75 (2.95) | 62 (2.44) | 83 (3.27) | 49 (1.93) | 67 (2.64) | 54 (2.13) | 75 (2.95) |
| G33 | 65 (2.56) | 83 (3.27) | 66 (2.60) | 87 (3.43) | 58 (2.28) | 76 (2.99) | 59 (2.32) | 80 (3.15) | 50 (1.97) | 68 (2.68) | 51 (2.01) | 72 (2.83) |
| J31/J33 | 74 (2.91) | 93 (3.66) | 80 (3.15) | 103 (4.06) | 55 (2.17) | 74 (2.91) | 61 (2.40) | 84 (3.31) | 47 (1.85) | 66 (2.60) | 53 (2.09) | 76 (2.99) |
| 030 | - | - | 57 (2.24) | 85 (3.35) | - | - | - | - | - | - | - | - |

## IMPORTANT

## SERVICE POLICY

Owners of Magnetrol products may request the return of a control; or, any part of a control for complete rebuilding or replacement. They will be rebuilt or replaced promptly. Magnetrol International will repair or replace the control, at no cost to the purchaser, (or owner) other than transportation cost if:
a. Returned within the warranty period; and,
b. The factory inspection finds the cause of the malfunction to be defective material or workmanship.

If the trouble is the result of conditions beyond our control; or, is NOT covered by the warranty, there will be charges for labour and the parts required to rebuild or replace the equipment.
In some cases, it may be expedient to ship replacement parts; or, in extreme cases a complete new control, to replace the original equipment before it is returned. If this is desired, notify the factory of both the model and serial numbers of the control to be replaced. In such cases, credit for the materials returned, will be determined on the basis of the applicability of our warranty.
No claims for misapplication, labour, direct or consequential damage will be allowed.

## RETURNED MATERIAL PROCEDURE

So that we may efficiently process any materials that are returned, it is essential that a "Return Material Authorisation" (RMA) form will be obtained from the factory. It is mandatory that this form will be attached to each material returned. This form is available through Magnetrol's local representative or by contacting the factory. Please supply the following information:

1. Purchaser Name
2. Description of Material
3. Serial Number
4. Desired Action
5. Reason for Return
6. Process details

All shipments returned to the factory must be by prepaid transportation. Magnetrol will not accept collect shipments.

All replacements will be shipped FOB factory.



[^0]:    CAUTION:
    Unit must be normalized to atmospheric pressure before removing switch housing assembly.

