Back Pressure/Pressure Relief Valves

Model BV60

General

The Model BV60 Brodie Control Valves are back pressure regulators designed to maintain a specific minimum upstream pressure regardless of fluctuations in flow rate or downstream pressure. When correctly installed and adjusted, the Model BV60 valve will maintain up stream pressure at a value within $+/-2 \mathrm{PSI}(13.8 \mathrm{kPa})$ of the valve pilot's setting. A minimum pressure differential across the valve of $15 \mathrm{PSI}(103 \mathrm{kPa})$ is required for it to fully open.

Design Features

- Modular construction -all internal parts including seat ring can be removed with the cylinder assembly without disturbing line connections.
- No diaphragms or stuffing boxes
- 45° body design assures high capacity
- Positive shut-off
- Uniform speed of response
- Linear control characteristics
- Inherently checks reverse flow
- Characterized ports for better low flow response

Valve Capacity Data

Value Size	$2^{\prime \prime}$	$3^{\prime \prime}$	$4^{\prime \prime}$	$6^{\prime \prime}$
*CV-gpm	90	190	315	700

*Cv based on wide open valve utilizing water at 60F (15.6C).

Principle of Operation

The Model BV60 valve is controlled by a back pressure pilot which senses line pressure at a selected point upstream of the valve and throttles the valve to maintain a desired minimum pressure at that point. If line pressure at the sense point exceeds the setting of the pilot, the pilot throttles the valve open until the correct pressure level is reached. Conversely, if line pressure at the sense point falls below the setting of the pilot, the pilot throttles the valve closed until the correct pressure level is reached. In the static condition, both the pilot and valve are closed. When the pump is activated, the initial pressure developed ta the valve intake is applied to the top of the valve piston, keeping it tightly seated and preventing all flow. As pump discharge pressure rises, it soon exceeds the set point of the pilot, which then opens the valve to provide flow.
Once the valve has opened and continuous flow is established, the pilot monitors upstream pressure and compares it with the set point. If upstream pressure is greater than the set point, the pilot vents the pressure on top of the valve piston downstream, and the valve opens wider to conduct more flow. If upstream pressure is less than the set point, however, the pilot applies additional pressure to the top of the valve piston, and the valve throttles closed to restrict flow. The valve will limit flow in this manner in order to maintain the required minimum back pressure. A needle valve is included as a sensitivity adjustment used to regulate the speed at which the valve opens and closes.

Typical Installation

Closed Position

The pilot is closed. Inlet pressure (P1) is less than the pilot spring setting, in-dicating the main line upstream (P1) has been closed off, or pressure is not sufficient to overcome the pilot spring setting. Pilot is closed. $Y=$ port (P3) to Z-port (P2) is closed. X-port (P1) and Y-port (P3) pressures are balanced. The main valve spring, being the differential force, closes the piston and keeps it seated.

Open - Controlled Position

The pilot Is partially open. Inlet pressure (P1) has slightly ex-ceeded the pilot spring setting. Z-port (P2) is being opened by the throttling of the pilot, reducing the pressure on Y-port (P3). The decreasing pressure at Y-port (P3) plus the main valve spring force establishes a position of the valve piston such that it balances inlet (P1) pressure equal to the pilot setting (Plus or minus 2 psi.)

Full Open - No Control

The pilot is full open. Inlet pressure (P 1) is greater than the pilot set-ting. Y-port (P3) is open to Z-port (P2). The valve is floating the stream and is not required to control.

= Outlet Pressure
= Pilot Spring Force

Materials of Construction
Main Valve Body: Steel-ASTM-A216-GR-WCB
Main Valve Cylinder: 17-4 Stainless Steel, Heat Treated
Main Valve Piston: Stainless Steel
Seat Ring: Stainless Steel
O-Rings: Viton Standard
(Other elastomers available)
Other Internal Parts: Stainless Steel
Pilot Valve Strainer/Needle Valve Strainer:
Standard: Steel
Tubings and Fittings: Standard: Steel

Optional Equipment

- Independent Opening Speed Control
- Stainless Steel Tubing
- Thermal Relief
- Pilot Line Isolation Block Valves
- Manual Override (Opens Valve)

Recommended Spare Parts
O-Rings

Flange Connections

Value Size	Connections	Max Working Pressures @100F	DIN Connections	Max working pressure
$2 "-6 "$	150 lb. ANSI	285 psi	DN $80-$ DN 150 PN 25	25 Bar
$2 "-6 "$	$300 \mathrm{lb} . \mathrm{ANSI}$	740 psi	DN $80-$ DN 150 PN 64	51 Bar

Temperature Range: $-20^{\circ} \mathrm{F}$ to $150^{\circ} \mathrm{F}\left(-29^{\circ} \mathrm{C}\right.$ to $\left.66^{\circ} \mathrm{C}\right)$

Shipping Weight And Volume (Approximate)

Value Size	Shipping Weight and volume
2"	69 lbs. @ 3 Cu. Feet
	31.3 kgs. @ 0.085 Cu. Meters
$3 "$	$105 \mathrm{lbs}$. @2.36 Cu. Feet
	47.63 kgs. @ 0.067 Cu. Meters
4"	140 lbs @ 2.51 Cu . Feet
	63.5 kgs. @ 0.071 Cu. Meters
6"	250 lbs. @ 4.84 Cu. Feet
	113.4 kgs. @ 0.137 Cu. Meters

Pilot Spring Ranges

$150-300 \mathrm{lb}$. Valves	
PSI	kPa
$0-20$	$0-138$
$* 0-40$	$0-276$
$30-80$	$207-552$
$70-180$	$483-1241$
$150-350$	$1034-2413$
$350-650$	$2413-4482$

[^0]
Ordering Information

In order to accurately process an order, such information as product to be metered, product viscosity, product temperature range, ambient temperature range, rate of flow, operating pressure, units of registration, accessories required, and optional features needed must be specified by the customer.

Dimensions (For Certified Dimensional Prints -Consult Factory)

Value Size	mm	A	
	inches	150 lb.	300 lb.
$2^{\prime \prime}$	mm	260	267
	inches	$101 / 4^{\prime \prime}$	$101 / 2^{\prime \prime}$
$3^{\prime \prime}$	mm	279	333
	inches	$11^{\prime \prime}$	$131 / 8^{\prime \prime}$
44^{*}	mm	330	368
	inches	$13^{\prime \prime}$	$141 / 2^{\prime \prime}$
$6^{\prime \prime}$	mm	432	454
	inches	$17^{\prime \prime}$	$177 / 8^{\prime \prime}$

NOTE:

Do not operate this instrument in excess of the specifications listed. Failure to heed this warning could result in serious injury and/or damage to the equipment.

Brodie International

P.O. Box 450 (30459-0450)

19267 Highway 301 North
Statesboro, GA 30461
USA
Phone: +1 (912) 489-0200
Fax: $\quad+1$ (912) 489-0294

[^0]: * Spring selection based on control pressure set point.

