Rosemount 5600 Series Radar Level Transmitter with HART[®] and FOUNDATION[™] fieldbus protocol

www.rosemount.com

Rosemount 5600 Series Radar Level Transmitter

NOTICE

Read this manual before working with the product. For personal and system safety, and for optimum product performance, make sure you thoroughly understand the contents before installing, using, or maintaining this product.

Within the United States, Rosemount Inc. has two toll-free assistance numbers.

Customer Central: 1-800-999-9307(7:00 a.m. to 7:00 p.m. CST) Technical support, quoting, and order-related questions.

North American Response Center:1-800-654-7768 (*24 hours a day – Includes Canada*) Equipment service needs.

The products described in this document are NOT designed for nuclear-qualified applications.

Using non-nuclear qualified products in applications that require nuclear-qualified hardware or products may cause inaccurate readings.

For information on Rosemount nuclear-qualified products, contact your local Rosemount Sales Representative.

Rosemount and the Rosemount logotype are registered trademarks of Rosemount Inc. PlantWeb is a registered trademark of the Fisher-Rosemount group of companies. HART is a registered trademark of the HART Communication Foundation. Teflon, VITON, and Kalrez are registered trademarks of E.I. du Pont de Nemours & Co. FOUNDATION is a trademark of the Fieldbus Foundation. DeltaV is a trademark of Emerson Process Management group of companies. All other marks are the property of their respective owners. Cover Photo: 5600_01ad

ROSEMOUNT[®]

Reference Manual 00809-100-4024, Rev BA

September 2005

Table of Contents

SECTION 1 Introduction	Safety Messages1-1Overview1-2Specific FCC Requirements (USA only)1-6Measuring Range1-7Unpacking your 5600 Transmitter1-8Service Support1-9Within USA:1-9Outside USA:1-9
SECTION 2 Mechanical Installation	Safety Messages2-1Introduction2-2Tools2-2General Installation Requirements2-2Customer Supplied Flanges2-2Nozzle Requirements2-3Free Space Requirements2-4Beam Width2-5Special Antennas and Space Requirements Reference2-5Wave Guide Tubes2-6Mounting the Rod Antenna, Flanged Version2-11Mounting the Cone Antenna - PTFE sealing2-14Mounting the Cone Antenna - Quartz sealing2-17Mounting the Process Seal Antenna2-22Mounting the Cone Antenna in a Still-pipe/Bridle2-25
	For Still Pipes 2-26 For Bridle Pipes 2-27 Mounting the Antenna 2-29 Mounting the Parabolic Antenna 2-31 Mounting the Extended Cone Antenna 2-37 Setting the Tank Connection Length (TCL) 2-38 Setting the Hold Off Distance 2-39 Installation Requirements Extended Cone Antenna 2-40 Mounting the Cone Antenna with Flushing Connections 2-43
SECTION 3 Electrical Installation	Safety Messages3-1System Overview3-2Cables3-3Power Supply3-3Grounding3-4HART Electrical Installation3-4External Connections3-4Connecting HART devices3-6

	FOUNDATION Fieldbus Electrical Installation 3-8
	Power Supply 3-8
	Fieldhus Connections 3-9
	Model Code 3-9
	External Connections 3-9
	Hazardous Locations 3-10
	Grounding 3-10
	Connecting fieldbus devices 3-11
	Connecting the 2210 Display Unit
	Temperature Measurement 3 14
SECTION A	Safaty Massagas / 1
Configuration	
Configuration	Basic Configuration 4-2
	Advanced Configuration
	Anienna
	Analog Output
	Process Conditions
	Temperature Measurement
	Volume Calculation
	Advanced Functions
	Disturbance Echo Handling
	Bottom Echo Handling4-14
	Full Tank Handling 4-15
	Empty Tank Handling
	Surface Tracking4-16
	Filtering
SECTION 5	Safety Messages
HART Configuration	Overview
-	PC Configuration Software Radar Master
	Installation
	Main Configuration Icons 5-4
	Hand-Held Communicator 5-7
	HART Fast Keys5-9
	Setting the Loop to Manual
	Connections and Hardware 5-9
	Using a Hand Held Communicator
	Level Configuration Example
SECTION 6	Introduction
FOUNDATION Fieldbus	Overview
Configuration	Foundation Fieldbus Function Blocks
e ega a	Assigning Device Tag and Node Address
	Configure Transmitter using Delta V 6-3
	Configure the Parameters 6-4
	Configure the AI Block6-10
	Application Examples6-13
	Application Example: Radar Level Transmitter, Level Value 6-13
	Application Example:

Reference Manual

00809-0100-4024, Rev BA September 2005

	Radar Level Transmitter, Level value in percent (%)
SECTION 7 2210 Display Unit Configuration	Safety Messages7-1Rosemount 2210 Display Unit7-2Operation7-3Viewing Level Data7-6Display Setup7-7Installing a Rosemount 5600 Radar Level Transmitter7-8
SECTION 8 Maintenance and Troubleshooting	Overview8-1Safety Messages8-1Warnings8-1HART Maintenance and Troubleshooting8-2Troubleshooting Table8-2Service Using the Rosemount 2210 Display Unit8-2Field Upgrades8-2Connection via Sensor Bus Port8-3Fieldbus Maintenance and Troubleshooting8-4Configure Transmitter8-4Service Method8-4Calibration Distance Configuration8-4Master Reset Method (Resource Block)8-4Write Protection (Resource Block)8-4Block Instantiation8-6Troubleshooting Table8-6Field Upgrades8-7Resource Block8-8Transducer Block8-9Analog Input (AI) Function Block8-9
APPENDIX A Reference Data	Specifications.A-1General.A-1Measuring PerformanceA-1Display/ConfigurationA-2ElectricA-3Analog Output CharacteristicsA-3Fieldbus Output CharacteristicsA-42210 Display Unit Output CharacteristicsA-5MechanicalA-6EnvironmentA-7Dimensional DrawingsA-8Ordering InformationA-19
APPENDIX B Product Certifications	Approved Manufacturing Locations

	2210 Display UnitB-4ATEX Directive (94/9/EC)B-5Ordinary Location Certification for Factory MutualB-5Canadian Registration Number (CRN)B-5Hazardous Locations CertificationsB-6ATEX Approval DrawingsB-9CSA Approval DrawingsB-13
APPENDIX C Level Transducer Block	OverviewC-1Parameters and Descriptions.C-2Diagnostics Device Errors.C-6Supported Units.C-7Unit codes.C-7Methods.C-7
APPENDIX D Resource Block	Overview
APPENDIX E Register Transducer Block	Overview

Reference Manual

Section

00809-0100-4024, Rev BA September 2005

1

Introduction

Safety Messages page	1-1
Overview	1-2
Specific FCC Requirements (USA only)page	1-6
Unpacking your 5600 Transmitterpage	1-8
Service Supportpage	1-9

SAFETY MESSAGES

Procedures and instructions in this manual may require special precautions to ensure the safety of the personnel performing the operations. Information that raises potential safety issues is indicated by a warning symbol (\triangle). Refer to the safety messages listed at the beginning of each section before performing an operation preceded by this symbol.

AWARNING

Explosions could result in death or serious injury:

Verify that the operating environment of the transmitter is consistent with the appropriate hazardous locations certifications.

Before connecting a HART-based communicator in an explosive atmosphere, make sure the instruments in the loop are installed in accordance with intrinsically safe or non-incendive field wiring practices.

Failure to follow safe installation and servicing guidelines could result in death or serious injury:

Make sure only qualified personnel perform these procedures.

Use the equipment only as specified in this manual. Failure to do so may impair the protection provided by the equipment.

Do not perform any service other than those contained in this manual unless you are qualified.

AWARNING

This product is an electrical apparatus and must be installed in the hazardous area in accordance with the requirements of the EC Type Examination Certificate. The installation and maintenance must be carried out in accordance with all appropriate international, national and local standard codes of practice and site regulations for intrinsically safe apparatus and in accordance with the instructions contained within this manual. Access to the circuitry must not be made during operation.

OVERVIEW

This manual provides information about mechanical and electrical installation of the 5600 Series Radar Level Transmitter. It also describes how to start up and configure the transmitter. The main purpose of the book is to act as guide to installing and operating the 5600 Series Radar Level Transmitter. It is not intended to cover service tasks such as changing circuit boards or internal software.

Section 2: Mechanical Installation

• Mechanical installation instructions

Section 3: Electrical Installation

• Electrical installation instructions

Section 4: Operation

• Operation

Section 5: HART Configuration

- Commissioning
- Software functions
- · Configuration parameters
- Online variables

Section 6: FOUNDATION Fieldbus Configuration

- Commissioning with Delta V
- Software functions
- Configuration parameters
- Online variables

Section 7: 2210 Display Unit Configuration

Commissioning

Section 8: Maintenance and Troubleshooting

 Troubleshooting techniques for the most common operating problems for HART and FOUNDATION fieldbus protocol only.

Appendix A: Reference Data

- Specifications
- Dimensional Drawings
- Ordering information for HART and FOUNDATION fieldbus protocols

Appendix B: Product Certifications

- · Intrinsic safety approval information
- European ATEX directive information
- · Approval drawings for HART and fieldbus protocols

Appendix C: Level Transducer Block

• Supplies Level Transducer Block data

Appendix D: Resource Block

· Contains information relating to the operation of the resource block.

Appendix E: Register Transducer Block

 Contains information relating to the operation of the register transducer block.

The 5600 Series Radar Level Transmitter is a powerful radar level transmitter suitable for non-contact level measurements in process tanks, storage tanks, and other types of tanks. It is designed for easy installation and maintenance free operation.

Together with the Rosemount Radar Master Configuration Tool you are able, in an easy and user-friendly way, to configure the 5600 transmitters. The Radar Master program is a Microsoft[®] Windows-based software package designed for the 5600 transmitters, and offers great assistance, from startup and commissioning to advanced service. It includes waveform plots, off-line configuration, logging, and an extensive on-line Help.

Figure 1-1. System Integration using the Hand-held Communicator Figure 1-2. System Integration using FOUNDATION fieldbus

For stand-alone systems, or as a complement to a PC or a control system, you can monitor level data using one or two analog outputs depending on the particular hardware configuration.

As an option, your Rosemount 5600 Radar Level Transmitter can be equipped with an easy-to-use Rosemount 2210 Display Panel. It offers basically the same functionality as the Radar Master package. Four sturdy softkeys give you access to configuration routines, service functions, and level monitoring.

Measurement Principle

The level of the product in the tank is measured by radar signals transmitted from the antenna at the tank top. After the radar signal is reflected by the product surface the echo is picked up by the antenna. As the signal is varying in frequency the echo has a slightly different frequency compared to the signal transmitted at that moment. The difference in frequency is proportional to the distance to the product surface, and can be accurately calculated. This method is called FMCW (Frequency Modulated Continuous Wave) and is used in all high performance radar transmitters.

Reference Manual 00809-0100-4024, Rev BA September 2005

Figure 1-3. Frequency Modulated Continuous Wave

1-5

The 5600 Series Radar Level Transmitter sends a microwave signal with a continuously varying frequency towards the product surface. When the reflected signal returns to the antenna, it is mixed with the outgoing signal.

Since the transmitter continuously changes the frequency of the transmitted signal, there will be a difference in frequency between the transmitted and the reflected signals.

The transmitter mixes the two signals, resulting in a low frequency signal which is proportional to the distance to the product surface. This signal can be measured very accurately allowing fast, reliable, and accurate level measurements.

The 5600 Series Radar Level Transmitter uses micro frequency to reduce sensitivity to vapor, foam, and contamination of the antenna, and keeps the radar beam narrow in order to minimize influence from walls and disturbing objects.

The 5600 Series Radar Level Transmitter uses Fast Fourier Transformation (FFT), which is a well established signal processing technique, to obtain a frequency spectrum of all echoes in the tank. From this frequency spectrum the surface level is extracted. In combination with the echofixer, FFT allows measurements in tanks with agitators, mixers and other disturbing objects. The echofixer provides a technique to adapt measurements to various situations, by using information from previous measurements.

This device complies with part 15 of the FCC Rules. Operation is subject to the following two conditions: (1) This device may not cause harmful interference, and (2) this device must accept any interference received, including interference that may cause undesired operation.

The Rosemount 5600 generates and uses radio frequency energy. If it is not installed and used properly (in strict accordance with the manufacturer's instructions) it may violate FCC regulations on radio frequency emission.

Installation on non-metallic tanks, tanks with open manholes, external-floating-roof tanks without stillpipes etc. are not covered by this certificate, and require a Part 90 site-license. If you have an installation like this, contact your local Emerson Process Management representative for help with the necessary license application.

SPECIFIC FCC REQUIREMENTS (USA ONLY)

Measuring Range

The diagrams below show how the measuring range is influenced by the antenna type, dielectric constant of the liquid (ε_r) and the process conditions. For optimum performance the maximum measuring distance should be kept within the range indicated with darker color in the diagrams. Values are valid for free propagation measurement without still-pipes (bridles).

For liquids with ε_r that are smaller than 1.9 such as liquefied gases, an 8 inch or bigger diameter antenna is recommended if measurement is done with free propagation. In this case the measuring range in calm surface tanks is in typical cases 50 ft. (15 m).

To increase the measuring range further in turbulent tanks, a still-pipe can be used. For still-pipe mounted 5600 transmitters the typical measuring range is 115-160 ft. (35-50 m) in turbulent tanks with liquids having ϵ_r less than 1.9.

Table 1-1	. Categories of liquids
а	Oil, gasoline and other hydrocarbons, petrochemicals (dielectric constant, ϵ_r =1.9-4.0)
b	Alcohols, concentrated acids, organic solvents, oil/water mixtures and acetone (ϵ_r =4.0-10)
С	Conductive liquids, e.g. water based solutions, dilute acids and alkalis ($\varepsilon_r > 10$)

Figure 1-4. Applications with calm product surface⁽¹⁾

Figure 1-5. Applications where the product is gently stirred, causing minor turbulence⁽¹⁾

Figure 1-6. Applications with turbulent product surface conditions⁽¹⁾

recommended for turbulent conditions

Minimum Measuring Distance

The minimum distance the radar can measure depends on the antenna selected. Typically the level can come as close as 0.79-in. (20 mm) from the antenna tip, before the software disregards the signal. Being this close to the antenna may however reduce the measurement accuracy. Table 2-1 on page 2-3 includes the value Hold Off Distance, which is the default setting for this minimum distance. It can not be decreased, only increased if needed.

Measuring Close to Tank Bottom

When measuring products with low dielectric constants, i.e. DC range 1.4 - 2.5, some of the radar energy will go thru the product. This could lead to that the radar will see the Flat Tank Bottom, even though there is a small amount of product covering the bottom of the tank. This could reduce the accuracy of the measurement at these lower product levels. This could occur at product levels of 4-6 inch (100-150 mm) or lower, but depends on the product as well as the tank bottom type. There are special software settings that could improve this situation, or alternatively mechanical changes could be implemented to minimize the influence from the bottom of the tank.

UNPACKING YOUR 5600 TRANSMITTER

Verify that you have received:

- 1 box with the transmitter head. This box also includes a Hook spanner (used to open the terminal compartments), Reference manual (00809-0100-4024), Rosemount Radar Master CD-Rom (0822-0100-4757), and a Quick Installation Guide.
- 1 box with the antenna. This box contains the complete antenna assembly, including the Waveguide Tube (see page 2-6) which is to be inserted in the transmitter head foot.

NOTE

If you ordered flanges, the flanges are typically stored at the bottom of the bigger wooden crate that the transmitter is delivered in. They are held in place with bolts and nuts.

SERVICE SUPPORT	If you have reason to believe that your Rosemount 5600 Radar Level Transmitter may need to be returned for service, contact the appropriate representative.		
Within USA:	Please contact a Level Applications Support Specialist at Rosemount Customer Central (1-800-999-9307). They will help you determine the best course of action, and may transfer you to either an Order Administrator or to the Rosemount North American Response Center (NARC) to arrange for the return of your transmitter for service or repair.		
Outside USA:	For Service Support outside the United States, please contact your nearest Rosemount Representative.		
	NOTE Most radar problems encountered in the field are applications-related and can best be dealt with while the transmitter is installed.		
	The representative will assist you with any needed information or materials.		
	The representative will ask for the following information:		
	Product model		
	Serial numbers		
	The last process material to which the product was exposed		
	The representative will provide:		
	A Return Material Authorization (RMA) number		
	 Instructions and procedures that are necessary to return goods that were exposed to hazardous substances 		
	Spare Parts		

Any substitution of non-recognized spare parts may jeopardize safety. Repair, e.g. substitution of components etc., may also jeopardize safety and is under no circumstances allowed.

Reference Manual

00809-0100-4024, Rev BA September 2005

Section 2 Mechanical Installation

SAFETY MESSAGES

Procedures and instructions in this manual may require special precautions to ensure the safety of the personnel performing the operations. Information that raises potential safety issues is indicated by a warning symbol ($\underline{\Lambda}$). Refer to the safety messages listed at the beginning of each section before performing an operation preceded by this symbol.

AWARNING

Explosions could result in death or serious injury:

Verify that the operating environment of the transmitter is consistent with the appropriate hazardous locations certifications.

Before connecting a HART-based communicator in an explosive atmosphere, make sure the instruments in the loop are installed in accordance with intrinsically safe or non-incendive field wiring practices.

AWARNING

This product is an electrical apparatus and must be installed in the hazardous area in accordance with the requirements of the EC Type Examination Certificate. The installation and maintenance must be carried out in accordance with all appropriate international, national and local standard codes of practice and site regulations for intrinsically safe apparatus and in accordance with the instructions contained within this manual. Access to the circuitry must not be made during operation.

Rosemount 5600 Series

	∆WARNING
	Failure to follow safe installation and servicing guidelines could result in death or serious injury:
	Make sure only qualified personnel perform these procedures.
	Use the equipment only as specified in this manual. Failure to do so may impair the protection provided by the equipment.
	Do not perform any service other than those contained in this manual unless you are qualified.
	The quartz seal is not suitable for use in environments where there is a risk for variations or other mechanical impacts.
	For quartz seal, mechanical shocks may permanently damage the seal. A damaged tank seal must be replaced. Replacement must be done when the tank is unpressurized.
	The customer must always make sure that exposed material of antenna and tank seal is compatible with the tank content, e.g. the quartz seal is not suitable for use with Hydrofluoric acid (HF).
	A damaged quartz tank seal will typically cause one or many disturbance echoes which will be seen in a tank spectrum plot during gauge configuration.
INTRODUCTION	This section describes the mechanical installation. Start by reading the General Installation Requirements for your antenna. This includes Nozzle and Free Space Requirements. The last part of this section includes mounting instructions for all antenna types, including special requirements for still pipe/bridle installations and applications.
Tools	The following set of tools are needed for installation of a 5600 Series Radar Level Transmitter:
	Screw driver.
	Adjustable wrench.
	Allen kev
	Circlin plier (spap ring plier)
	 Hook spanner (comes delivered with the transmitter)
	· · · · · · · · · · · · · · · · · · ·
GENERAL INSTALLATION REQUIREMENTS	Position the transmitter in a way that allows the microwaves to propagate without disturbance from the tank wall. In order to achieve optimum performance you should consider the following recommendations:
	 Try to avoid obstacles in the radar beam.
	 Mount the transmitter away from pipe inlets which cause turbulent conditions.
	 Choose as large antenna as possible to ensure maximum antenna gain.
	 For best measurement performance it is recommended that the antenna tip ends outside the nozzle, see Figure 2-2.
Customer Supplied Flanges	The simple design of cone and rod antennas tank connection allows the use of customer supplied flanges. If a hole is drilled in a standard blind flange the pressure performance may be reduced. In such a case the flange should be marked with new rating for Maximum Allowed Working Pressure (MAWP).

Nozzle Requirements

In order to allow the microwaves to propagate undisturbed, the nozzle dimensions should be kept within the specified limits for the different antennas.

Figure 2-1. Nozzle Requirements, see Table 2-1

Table 2-1. Nozzle Requirements in inches (millimeters)

Antenna	L _{recommended}	Diam _{min}	L _{maximum}	Hold Off Distance
Rod100	3.9 (100) or less	1.6 (43)	3.9 (100)	23.6 (600)
Rod250	9.8 (250) or less	1.6 (43)	9.8 (250)	30.7 (780)
Cone 3 in.	3.7 (95) or less	2.9 (75)	9.6 (245)	4.7 (120)
Cone 4 in.	5.9 (150) or less	3.8 (98)	11.8 (300)	6.7 (170)
Cone 6 in.	10.2 (260) or less	5.7 (146)	16.1 (410)	11.0 (280)
Cone 8 in.	14.6 (370) or less	7.6 (194)	20.6 (525)	15.8 (400)
Parabolic	6.3 (160) or less	19.7 (500)	23.6 (600)	7.9 (200)
Process Seal 4 in.	11.8 (300) or less	3.9 (100)	11.8 (300)	7.9 (200)
Process Seal 6 in.	11.8 (300) or less	5.9 (150)	11.8 (300)	7.9 (200)
Extended Cone 3 in.	19.5 (495) or less	3.0 (75)	19.5 (495)	20.5 (520)
Extended Cone 4 in.	19.5 (495) or less	3.9 (98)	19.5 (495)	20.5 (520)
Extended Cone 6 in.	19.5 (495) or less	5.8 (146)	19.5 (495)	20.5 (520)
Flushing Cone 4 in.	5.9 (150) or less	3.9 (98)	11.8 (300)	6.7 (170)
Flushing Cone 6 in.	10.2 (260) or less	5.8 (146)	16.1 (410)	11.0 (280)
Flushing Cone 8 in.	14.6 (370) or less	7.6 (194)	20.7 (525)	15.8 (400)

NOTE

For Parabolic Antennas mounted in solid applications, minimize the L Distance to allow the Parabolic Antenna to reach into the tank. See **Measuring Solids with a Rosemount 5600 Non-contacting Radar** (part number 00830-0800-4024).

Figure 2-2. Antenna Tip Outside Nozzle to get the Best Measurement Performance

Rosemount 5600 Series

Free Space Requirements

Figure 2-3. Free Space Requirements, see Table 2-2

Table 2-2. Free Space Requirements

A. Service Space Width	Distance in. (mm)
All antennas	22 (550)
B. Service Space Height	
Antenna	Distance in. (mm)
Rod	27 (700)
Cone, Extended Cone, Flushing Cone	25 (650)
Process Seal	31 (800)
Parabolic	27 (700)
C. Inclination	
Antenna	Maximum Angle
Rod	3°
Cone	1°
Process Seal	3°
Parabolic	3°
D. Minimum distance to tank wall ⁽¹⁾	
Antenna	Distance in. (mm)
Rod	24 (600)
Cone	24 (600)
Process Seal	24 (600)
Parabolic	24 (600)

(1) Mounting closer to the tank wall may be allowed if reduced accuracy is accepted.

Reference Manual 00809-0100-4024, Rev BA September 2005

Beam Width

Figure 2-4. Beam width angle, see Table 2-3

Table 2-3. Beam width angle

Antenna	Beam Width
Cone 3 in.	25°
Rod/Cone 4 in./ Process Seal 4 in.	21°
Cone 6 in./ Process Seal 6 in.	18°
Cone 8 in.	15°
Parabolic	10°

Figure 2-5. Beam width distance, see Table 2-4

Table 2-4. Beam width distance

	Diameter of radiated area at different distances from flange, ft. (m)			
Antenna	16 ft (5 m)	33 ft (10 m)	49 ft (15 m)	66 ft (20 m)
Cone 3 in.	7.2 (2.2)	14 (4.4)	22 (6.7)	29 (8.9)
Rod/Cone 4 in./ Process Seal 4 in.	6.2 (1.9)	12 (3.7)	18 (5.6)	24 (7.4)
Cone 6 in./ Process Seal 6 in.	5.2 (1.6)	10 (3.1)	15 (4.7)	21 (6.3)
Cone 8 in.	3.3 (1.0)	7.9 (2.4)	13 (3.9)	17 (5.2)
Parabolic	3.0 (0.9)	5.6 (1.7)	8.5 (2.6)	11 (3.5)

Special Antennas and Space Requirements Reference

Pipe Installation

See page 2-40 and page 2-25.

Extended Cone Installation

See page 2-40 and page 2-37.

WAVE GUIDE TUBES

NOTE

The Waveguide Tubes are parts of the antenna kits.

Cone and Rod Antenna

- For model codes 1xx, 2xx, 7xx, and 9xx (with PTFE Seal for Cone)
- Distinguishing features:
 a. Length: 1.57-in. (40 mm)

7

Process Seal

- For model codes 34S and 36S.
- Distinguishing features:
 - a. Length: 2.93-in. (74.5 mm)
 - b. O-ring on the inside

Parabolic

- For model codes 45S and 46S
- Distinguishing features:
 - a. Length: 2.93-in. (74.5 mm)
 - b. No o-ring on the inside

Cone Antenna with Quartz Seal

- Model code option Q (with Quartz Seal)
- Distinguishing features:
 - a. Complete assembly
 - b. No loose waveguide tube
- Not available as spare part. If spare part is required, order complete antenna.

MOUNTING THE ROD ANTENNA, FLANGED VERSION

Figure 2-6. Rod Antenna Dimensions, Flanged Version

1. Mount the flange on top of the rod plate. Make sure the bottom side of the flange is flat and all parts are clean and dry.

Figure 2-7. Mount the flange

Rosemount 5600 Series

2. Secure the flange and label plate with the locking nut. Make sure the nut fits tightly to the flange.

Figure 2-8. Secure the flange with the locking nut

3. Mount the adapter on top of the sleeve.

Figure 2-9. Mounting the adapter

4. Secure the adapter with the locking ring.

Figure 2-10. Use the locking ring to secure the adapter

5. Carefully fit the flange and the rod antenna on the tank nozzle with an appropriate gasket in between. Tighten with screws and nuts.

Figure 2-11. Mount the flange and rod antenna on the nozzle

Rosemount 5600 Series

6. Insert the wave guide tube into the upper wave guide. Make sure the o-ring at the lower end of the wave guide tube is in place.

Figure 2-12. Mount the transmitter head

7. Place the protection sleeve on the flange. Mount the transmitter head and tighten the nut. Check that the guide pins on the adapter enter the corresponding grooves on the upper wave guide.

Figure 2-13. Completed mechanical installation

8. Proceed with the electrical installation.

MOUNTING THE ROD ANTENNA, THREADED VERSION

Figure 2-14. Rod Antenna Dimensions, Threaded Version

1. Carefully fit the rod antenna into the threaded nozzle and screw it in place.

NOTE

For adapters with NPT threads, pressure-tight joints may require a sealant.

antenna

2. Insert the wave guide tube into the upper wave guide. Make sure the o-ring at the lower end of the wave guide tube is in place.

Figure 2-16. Mount the transmitter head

TH40HEAD_NOZZLE_BSP.EPS

3. Place the protection sleeve on the flange. Mount the transmitter head and tighten the nut. Check that the guide pins on the adapter enter the corresponding grooves on the upper wave guide.

Figure 2-17. Completed mechanical installation

4. Proceed with the electrical installation.

MOUNTING THE CONE ANTENNA - PTFE SEALING

Figure 2-18. Cone Antenna Dimensions

- 1. Remove locking ring and adapter from antenna.
- 2. Mount the flange on top of the cone plate. Make sure that the bottom side of the flange is flat and all parts are clean and dry.

Figure 2-19. Mount the flange

 Secure the flange with the locking nut. Make sure that the nut fits tightly to the flange.

Figure 2-20. Secure the flange with the locking nut

4. Mount the adapter on top of the sleeve.

Figure 2-21. Mounting the adapter

5. Secure the adapter with the locking ring.

Figure 2-22. Use the locking ring to secure the adapter

- 6. Carefully fit the flange and the cone antenna on the tank nozzle.
- 7. Tighten with screws and nuts.

Figure 2-23. Mount the flange and cone antenna on the nozzle

8. Insert the wave guide tube into the upper wave guide. Make sure the gasket at the lower end of the wave guide tube is in place.

Figure 2-24. Mount the transmitter head

 Place the protection sleeve on the flange. Mount the transmitter head and tighten the nut. Check that the guide pins on the adapter enter the corresponding grooves on the upper wave guide.

Figure 2-25. Completed mechanical installation

10. Proceed with the electrical installation.

MOUNTING THE CONE ANTENNA - QUARTZ SEALING

Figure 2-26. Cone Antenna Dimensions

Antennas including tank seal of quartz material are suitable for high pressure applications.

NOTE

The quartz seal shall be protected against mechanical shocks or impacts. It is important to handle the antenna carefully in order to avoid any mechanical stresses such as bending or pressing the sealing.

- 1. Remove locking ring and adapter from antenna.
- 2. Mount the range on top of the cone plate. Make sure the bottom side of the flange is flat and all parts are clean and dry.

Figure 2-27. Mount the flange

Figure 2-28. Secure the flange

with the locking nut

3. Secure the flange and label plate with the locking nut using a spanner with key width 1.6-in. (41 mm). Make sure the locking nut fits tightly to the flange without any visible gap between the plate and the flange.

4. Mount the adapter on top of the sleeve.

Figure 2-29. Mounting the adapter

5. Secure the adapter with the locking ring.

Figure 2-30. Use the locking ring to secure the adapter

- 6. Fit the flange with the cone antenna on the horizontal tank flange. If the tank flange is not horizontal, the performance of the gauge may be negatively impacted.
- 7. Tighten with screws and nuts.

Figure 2-31. Mount the flange and cone antenna on the nozzle

CONETANK_QUARTZ.EPS

- 8. Before mounting the transmitter head, visually verify that the quartz tank seal is undamaged and free from moisture and dirt.
- 9. Place the protection sleeve on the flange.
- 10. Mount the transmitter head on the adapter in one of the four possible positions.

Figure 2-32. Completed mechanical installation

Quartz tank seal shall not be removed when tank is pressurized.

11. Check the guide pins on the adapter enter the corresponding grooves on the upper wave guide. Maximum allowed spacing is 0.2-in. (5 mm). Tighten the nut manually or with a wrench using approximately 20-50 Nm torque until it stops on the adapter. It is normal that the transmitter head can be rotated a fraction corresponding to the play between the guide pins and the grooves. This will not have any negative impact on the performance of the gauge.

Figure 2-33. Completed Installation

12. Proceed with the electrical installation.

MOUNTING THE **PROCESS SEAL ANTENNA**

Figure 2-34. Process Seal Antenna Dimensions

Note Dimensions are in inches (millimeters)

Preparations:

It is important that the tank flange surface is flat. The maximum deviation must be within the following specifications as illustrated:

To mount the antenna do the following:

1. Place the teflon gasket supplied by Emerson Process Management on top of the nozzle and mount the antenna.

NOTE

The teflon gaskets are optimized for use with microwave emitting equipment. No other gaskets than Rosemount original may be used for Process Seal antennas. 2. Put the loose flange on top of the antenna.

Figure 2-35. Put the flange on top of the antenna

3. Tighten the flange to the antenna by using screws and nuts. Use lubricating grease to minimize friction when the screws are tightened.

Figure 2-36. Tighten the flange

NOTE

Tighten the screws carefully to the recommended torque according to Table 2-5. Tighten opposite screws in pair.

- 4. Insert the wave guide tube into the upper wave guide. (See Figure 2-24 on page 2-16.)
- 5. Mount the transmitter head onto the adapter.
- 6. Tighten the nut and make sure that the transmitter head fits tightly to the antenna.

Torque

Tighten the flange screws to the following torque:

Table 2-5.	Recommended	Torque	(Nm)	1
------------	-------------	--------	------	---

	PTFE	
DIN Flange	PN16	PN40
DN100	11	15
DN150	15	
ANSI Flange	150 Psi	300 Psi
4 in.	11	15
6 in.	15	10

MOUNTING THE CONE ANTENNA IN A STILL-PIPE/BRIDLE

NOTE

See Technical Note "Using Radar Transmitters in Stilling Wells and By-pass Cages" (part number 00830-2100-4024)

Installation Requirements for Cone Antenna in a Still-pipe/Bridle

The 5600 Series Radar Level Transmitter is suitable for measurements in still pipes and bridles. The high signal processing capacity allows measurements even when there are several pipe inlets, provided that the mechanical installation is done per the guidelines in this manual or related technical note.

Still-pipe or bridle pipe mounting is recommended for LPG tanks and other applications where surface conditions may be extremely turbulent. By using a pipe, foam and turbulence is reduced. Accuracy may, however, be reduced in bridle and still pipe applications.

Figure 2-37. Example of a Bridle mount (left) and a Still-pipe mount(right)

For Still Pipes

The 3, 4 and 6 in. cone antennas are designed to fit into new or existing still pipes with the corresponding pipe size. A gap between the antenna opening and the pipe of up to 0.4 in. (10 mm) may occur. In most applications this gap has only a limited effect on the measuring performance.

It is always recommended to have the gap as small as possible, since larger gaps cause larger inaccuracies.

Figure 2-38. 3, 4, and 6 in. Cone Antenna in still pipe - gap between pipe and antenna

00809-0100-4024, Rev BA September 2005

For Bridle Pipes

For Bridle applications the basic guidelines are similar to the guidelines written above for Still Pipes, i.e. that the 3, 4 and 6" Cone antennas will fit the corresponding pipe sizes, and you should try to get the gap as small as possible. If possible, and if the application allows for it, another general guideline is to keep the pipe inlet as small as possible.

In more difficult bridle applications with inlet pipes larger than 2 in. or in pipes with severe contamination can be expected, the antenna size should be customized to better fit the pipe. In this case do the following:

- a. Measure the inner diameter of the pipe.
- b. Cut the cone antenna so that it fits inside the Bridle Pipe.
- c. Make sure that the gap between the pipe and the antenna is smaller than 0.04 inches (1 mm).

Please contact your local Emerson Process Management representative for details about a factory-cut antenna.

Figure 2-39. Bridle Pipe installation guidelines

MEASUREMENT IN LARGE PIPES

When using standard cones in larger (8-in. or larger) still pipe installations, there is a risk for measurement problems. When standard linear shaped cones are used in pipes, more than one microwave mode is generated and each mode has a unique propagation speed. This is a radar physics problem that is common to all radar gauges when linear shaped cones are used.

In larger pipes, the amplitude of echoes generated by the "unwanted" modes may become rather high, and may result in loss of the surface echo at certain locations in the pipe. In addition, there may be measurement errors associated with two closely spaced echoes where the gauge will not lock on a single target.

The relative amplitude of the unwanted modes in a straight cone is proportional to the product of the cone angle and the diameter in the cone opening. Therefore measurement error increases as pipe diameter increases since the cone angle is the same for all the cones.

Due to this issue, Emerson Process Management <u>does not recommend</u> using the 5600 Series 8-in. cone antennas for larger pipe measurements. Instead, a special pipe antenna should be used.

Table 2-6. Recommendations

	Pipe Size		
	3-in. (76 mm)	4-in. (102 mm)	6-in. (152 mm)
Maximum measuring range	65 ft (20 m)	65 ft (20 m)	65 ft (20 m)
Maximum hole size (\varnothing)	0.24 (6 mm)	0.28 (7 mm)	0.39 (10 mm)
Maximum number of holes per meter	2	2	2
Deflection plate required	Yes	Yes	Yes

Mounting the Antenna

1. Mount the antenna and the transmitter head in the same way as a standard cone antenna (see "Mounting the Cone Antenna - PTFE sealing" on page 2-14).

Figure 2-40. Mounting the antenna and transmitter head

2. Make sure that the inclination of the transmitter is less than 1°.

Figure 2-41. Inclination less than 1°

3. In order to minimize the influence of disturbing echoes from inlet and outlet pipes you may need to rotate the transmitter head 90°.

Figure 2-42. Example of rotating the transmitter head to minimize disturbing echoes

MOUNTING THE PARABOLIC ANTENNA

Figure 2-43. Parabolic Antenna Dimensions

NOTE Dimensions are in inches (millimeters)

Mounting the Flange Ball

- 1. The flange should be between 0.24 and 1.18 inches (6 and 30 mm) thick. Make sure the diameter of the hole is 3.78 in (96 mm).
- 2. Make a small recess in the flange hole.

Figure 2-44. Recess Hole

PARANT_FLANGE

3. Put the O-ring on the flange and insert the Flange Ball into the hole. Make sure the pin on the side of the Flange Ball fits into the corresponding recess on the flange.

Figure 2-45. Put the O-ring on the flange

- 4. Tighten the nut. Make sure the Flange Ball fits tightly to the flange.
- 5. Secure the nut by tightening the locking screw.

Figure 2-46. Secure the nut

PARANT_NUT_LOCKSCREW

Mounting the antenna

1. Fit the Parabolic Reflector to the Antenna Feeder and mount the five M5 screws that were delivered by Emerson Process Management.

Figure 2-47. Mount the five M5 screw

- 2. Tighten the screws.
- 3. Put the two O-rings in the grooves on the upper surface of the Flange Ball.

Figure 2-48. Put the two O-rings in the grooves

4. Turn the flange around and mount the antenna feeder on the flange. Mount the washers and nuts.

Figure 2-49. Mount washers and nuts

- 5. Tighten the Finger Nut and the Lock Nut loosely.
- 6. Place the antenna on the tank nozzle and tighten the flange screws.

Figure 2-50. Tighten the flange screws

7. Rotate the antenna so the groove on the Antenna Feeder is directed 90° to the tank wall.

Reference Manual

00809-0100-4024, Rev BA September 2005

PARANTANTENNAFEEDER.EPS

Figure 2-51. Groove on Antenna Feeder

- 8. Tighten the Finger Nut and the Lock Nut.
- 9. Mount the adapter nut on top of the antenna feeder. Tighten the adapter nut firmly.
- 10. Insert the Waveguide Tube into the Upper Waveguide.

Figure 2-52. Insert the Waveguide Tube into the Upper Waveguide

11. Carefully mount the Transmitter Head onto the adapter and tighten the Upper Waveguide Nut by hand. Make sure that the guide pins on the adapter fits into the holes on the Upper Waveguide.

Figure 2-53. Mount the Transmitter

12. When the antenna inclination is adjusted to obtain optimum performance (Figure 2-54), tighten the finger nut and the lock nut firmly. Secure by folding the tab washer over the lock nut (Figure 2-55).

NOTE

Normally the antenna should be mounted with inclination 0°. However, in some applications, for example solid products, a small inclination of the antenna may improve the performance. This may also be the case if there are disturbing echoes from objects in the tank.

Figure 2-55. Fold the tab washer over the lock nut.

MOUNTING THE EXTENDED CONE ANTENNA

1. Mount the antenna and transmitter head in the same way as a transmitter with a standard cone antenna (see "Mounting the Cone Antenna - PTFE sealing" on page 2-14).

Figure 2-56. Mounting the antenna and transmitter head

- 2. When the transmitter is mounted, the following antenna parameters must be adjusted by using the configuration software:
 - Tank Connection Length (TCL),
- Hold Off (H) distance.

See page 2-38 and page 2-39 for more information on how to set the Hold Off distance and the Tank Connection Length for a Cone Extension antenna. See also Section 4: Configuration for more information about these parameters.

Setting the Tank

Connection Length (TCL)

To set the Tank Connection Length, use one of the following procedures for Standard and Non-Standard Extended Cone Antenna.

Standard Extended Cone Antenna

For the 20 in. (500 mm) extended cone the following TCL_{ext} values can be used:

Table 2-7. Standard Extended Cone Antenna

Antenna Type	3 inch diameter = 68mm	4 inch diameter = 90mm	6 inch diameter = 138mm
TCL _{ext} /PTFE	0.019 (0.489)	1.90 (0.482)	1.88 (0.477)
TCL _{ext} /Quartz	2.08 (0.529)	2.06 (0.522)	2.04 (0.517)

Non-Standard Extended Cone Antenna

To adjust the TCL value do the following:

- 1. Start the Radar Master configuration software.
- 2. From the Antenna Type drop down list choose User Defined.
- Enter the new TCL value. Use the following formula to calculate the appropriate Tank Connection Length (TCL):

$TCL_{ext} = TCL_{cone} + K^*(L_{ext} - L_{antenna})$

where:

- TCL_{ext} = the TCL adjusted to the extended cone antenna (See Table 2-7).
- TCL_{cone} = the default TCL for a standard cone antenna without extension. Note that there are different TCL values for tank sealing PTFE and Quartz, see Table 2-8.
- L_{ext} = the measured length of the extended cone antenna.
- L_{antenna} = the length of the standard cone antenna without extension.
- K = a constant related to the antenna inner diameter.

Table 2-8. Non-Standard Extended Cone Antenna

Antenna Type	3 inch diameter = 68mm	4 inch diameter = 90mm	6 inch diameter = 138mm
K	0.035	0.020	0.008
L _{antenna}	0.094	0.148	0.261
TCL _{cone} /PTFE	0.475	0.475	0.475
TCL _{cone} /Quartz	0.515	0.515	0.515

Setting the Hold Off Distance

To set a new Hold Off distance do the following:

- 1. Start the configuration software.
- In the Hold Off/New input field type the desired Hold Off distance. Use the following formula in order to calculate the appropriate Hold Off (H) distance:

H=1.2 inches + L_{ext} (H=0.03 meters + L_{ext})

where:

· Lext is the length of the extended cone antenna

Figure 2-57. Extended cone antenna

Installation Requirements Extended Cone Antenna

Figure 2-58. Extended Cone Antenna Dimensions

The Extended Cone antenna is suitable for tanks with long nozzles or tanks where measurements should be avoided in the region close to the nozzle.

Use the Extended Cone antenna if:

- the nozzle is high, see Figure 2-59: ANSI 3" antenna for nozzles higher than 9.8 in. (250 mm), ANSI 4" antenna for nozzles higher than 11.8 in. (300 mm), ANSI 6" antenna for nozzles higher than 15.8 in. (400 mm),
- there are disturbing objects close to the tank opening, see Figure 2-60, or
- there is a rough surface at the inside of the nozzle or there is a height difference between nozzle sides, see Figure 2-61.

Figure 2-59. Example of a high nozzle

Figure 2-60. Example of disturbing objects close to the tank nozzle

Figure 2-61. Examples of problem nozzles

Figure 2-62. Total distance between flange and product level

- 1. Measure the total distance **A** between the flange and the maximum product level.
- The standard length of the Extended Cone antenna is 20 in. (500 mm). If A is less than 20 inches (500mm), then the cone may be cut so these minimum dimensions are met.

Due to the slanting opening of the antenna the direction of the radar beam is slightly changed towards the short end of the antenna opening. If objects are present which may cause disturbing radar echoes, the antenna should be oriented in such a way that the disturbing objects do not interfere with the radar signal. The short side should be turned away from disturbing objects on the most open part of the tank.

MOUNTING THE CONE ANTENNA WITH FLUSHING CONNECTIONS

Figure 2-63. Cone Antenna with Integrated Flushing Connection Dimensions

1. The flange is a part of the antenna assembly and welded to the cone antenna. Carefully fit the antenna assembly and appropriate gasket on the tank nozzle.

Figure 2-64. Mount the flushing cone antenna on the nozzle

FLUSHING_CONE_ANTENNA

 Insert the wave guide tube into the upper wave guide. Make sure the o-ring at the lower end of the wave guide tube is in place.

Figure 2-65. Insert wave guide tube

3. Mount the transmitter head and tighten the nut. Check that the guide pins on the adapter enter the corresponding grooves on the upper wave guide.

Figure 2-66. Mount the transmitter head

- 4. Connect your tubing to the antenna for cleaning, purging, or cooling purposes. Use a minimum 0.4 in. (10 mm) tube or pipe. Typical media to use are:
 - nitrogen,
 - air,
 - water, or
 - steam.

Figure 2-67. Connect tubing to antenna

Reference Manual

00809-0100-4024, Rev BA September 2005

Section 3 Electrical Installation

Safety Messages	page 3-1
System Overview	page 3-2
Cables	page 3-3
Power Supply	page 3-3
Grounding	page 3-4
HART Electrical Installation	page 3-4
FOUNDATION Fieldbus Electrical Installation	page 3-8
Connecting the 2210 Display Unit	page 3-12

SAFETY MESSAGES

Procedures and instructions in this section may require special precautions to ensure the safety of the personnel performing the operations. Information that raises potential safety issues is indicated by a warning symbol (\triangle). Please refer to the following safety messages before performing an operation preceded by this symbol.

AWARNING

Explosions could result in death or serious injury:

Verify that the operating environment of the transmitter is consistent with the appropriate hazardous locations certifications.

Before connecting a HART-based communicator in an explosive atmosphere, make sure the instruments in the loop are installed in accordance with intrinsically safe or non-incendive field wiring practices.

Do not remove the transmitter cover in explosive atmospheres when the circuit is alive.

Failure to follow safe installation and servicing guidelines could result in death or serious injury:

Make sure only qualified personnel perform the installation.

Use the equipment only as specified in this manual. Failure to do so may impair the protection provided by the equipment.

Do not perform any service other than those contained in this manual unless you are qualified.

High voltage that may be present on leads could cause electrical shock:

Avoid contact with leads and terminals.

Make sure the main power to the 5600 Series Radar Level Transmitter is off and the lines to any other external power source are disconnected or not powered while wiring the transmitter.

SYSTEM OVERVIEW

Power Supply

Connect the power supply to terminals 3 and 4 in the non-intrinsically safe Junction Box (EEx e).

Analog Outputs

There are two analog outputs which can be of passive or active type (external or internal loop supply). The primary output has a HART interface.

Connect the primary analog output to terminals 1 and 2.

Use the EExe junction box for non-intrinsically safe applications, and the EExi junction box for intrinsically safe applications.

Digital Communication

The 5600 Series Radar Level Transmitter can be equipped with HART interface, and can be either connected EExe or EExi.

The Foundation fieldbus can be connected to either the intrinsically safe (EExi) or the non-intrinsically safe (EExe) junction box.

Display Unit

Connect the intrinsically safe Rosemount 2210 Remote Display Unit to terminals 5, 6, 7 and ground in the intrinsically safe (EExi) junction box.

Transmitter Junction Box

The standard version is equipped with two separate junction boxes, one non-intrinsically safe and one intrinsically safe part. There is also an optional version with two non-intrinsically safe compartments.

Figure 3-1. Junction boxes X1 and X2

Figure 3-2. Schematic illustration of the Rosemount 5600 transmitter connection

CABLES

Depending on local requirements, cable glands, or explosion proof conduits must be used for connection to the non-intrinsically safe junction box (EEx e). For the connection to the instrinsically safe junction box (EEx i) use cable glands with integral shield connection for cable diameter 6-12 mm or conduit.

Use shielded instrument cable 0.5 mm² (AWG 20) for analog outputs and serial communication. Use min. 0.5 mm² cable for power supply.

POWER SUPPLY

You can use either DC or AC as the built in power supply has a wide input range. The following specification is valid for the power supply:

- 24-240 V
- DC/AC 0-60 Hz
- 10 W
- 15 VA

There is no voltage selector in the electronics compartment since the transmitter power supply unit automatically adapts to the available voltage within specified limits.

NOTE

The minimum voltage required at the transmitter power terminals is 20V. Check that the voltage loss over the power cables is not large enough to make the voltage drop below 20V. The maximum voltage is 265V over the same power terminals.

GROUNDING

ATEX

The flameproof enclosure must be connected to a potential equalizing network or the tank shell or according to national code of practice.

This grounding also serves as electrical safety ground. Additional connection to the protective ground terminal of terminal X1 in Junction Box EExe is not recommended except where required according to national code of practice. A ground loop with circulating current may occur. See Appendix B: Product Certifications.

Figure 3-3. Grounding connection

FM

Grounding is accomplished through the conduit pipes.

HART ELECTRICAL INSTALLATION

External Connections

Non-Intrinsically Safe Junction Box - EEx e

This Junction Box is for non-intrinsically safe connections and power supply.

Figure 3-4. Transmitter Terminal Block (Non-IS Wiring)

- **1-2** Non-intrinsically safe HART/4-20 mA primary analog output or non-intrinsically safe FOUNDATION fieldbus.
- 3-4 Power supply input
- A Electrical safety ground terminal

NOTE:

Redundant when the transmitter is grounded according to ATEX.

Cable shield

Connect the shield to the cable glands.

If conduit fittings are used no cable shield is used.

Intrinsically Safe Junction Box - EEx i

This Junction Box is for intrinsically safe connections and for connection of the Display Unit.

Figure 3-5. Transmitter Terminal Block (IS Wiring)

- **1-2** Intrinsically safe HART/4-20 mA primary analog output or intrinsically safe FOUNDATION fieldbus
- 3-4 Secondary analog output
- **5-7** Display Unit (6-7 also used for Sensor Bus see "Configuration Using the Sensor Bus Port" on page 6-16)
- A Ground terminal for Display Unit

Cable shield

Connect the shield to the cable glands. If conduit fittings are used no cable shield is used.

Optional Non-intrinsically Safe Junction Box

This is the standard intrinsically safe Junction Box (EExi) fitted with an alternative connector for connection of non-IS output if required.

Figure 3-6. Alternative Non-intrinsically safe junction box

5600-ANALOGOUT_ACTIVE_ED3

- 1-2 Not used
- 3-4 Non-intrinsically safe Secondary Analog Output
- Ground terminal (not used) Α

Cable shield

Connect the shield to the cable glands. If conduit fittings are used no cable shield is used.

Active output (internal loop supply)

For transmitters with active output a hand-held terminal or a HART modem can be connected as follows:

Junction Box Input Impedance (primary) EEx e < 300 Ohm 1 2 3 4 X1 24-240 V DC/AC 0-60 Hz

10 W 15 VA

Figure 3-7. Typical hand-held communicator active output

Connecting HART

devices

Passive output (external loop supply)

A hand-held terminal or a HART modem should not be connected directly across an external power supply. Instead, it should be connected across a load resistor of about 250 ohms.

Figure 3-8. Typical hand-held Communicator (passive output)

Intrinsically safe conditions

A hand-held intrinsically safe communicator can be connected in the hazardous area. The HART interface must be connected via a zener barrier in the safe area. It is also possible to use an intrinsically safe Ex classed HART interface which has a built in Zener barrier.

HART

Figure 3-9. Typical hand-held Communicator connection in intrinsically safe conditions

Non-Intrinsically safe conditions

Figure 3-10. Typical Hand-held Communicator connection in Non-intrinsically safe conditions

FOUNDATION FIELDBUS ELECTRICAL INSTALLATION

Power Supply

The transmitter requires separate power within the range 24-240 V AC or DC 0-60Hz. Tighten the terminal screws to ensure adequate contact. See "Power Supply" on page 3-3 and Figure 3-18 on page 3-14 for additional information.

Fieldbus Voltage limits: 9 to 32 V

Current Draw: 12.5 mA For I.S. Applications: $U_i < 30 V$ $I_i < 300 mA$ $P_i < 1.3 W$ $C_i = 0 \mu F$ $L_i = 0 mH$
Reference Manual

00809-0100-4024, Rev BA September 2005

Fieldbus Connections

For best installation practices use a fieldbus type A cable. Do not run unshielded signal wiring in conduit or open trays with power wiring or near heavy electrical equipment. Do not remove the transmitter cover in explosive atmospheres when the circuit is alive. Use ordinary copper wire of sufficient size to ensure that the voltage across the fieldbus terminals does not go below 9 V dc.

NOTE

Do not apply high voltage (e.g. ac line voltage) to the fieldbus terminals. Abnormally high voltage can damage the unit.

Model Code

Use the Model Code located on your fieldbus transmitter to determine wiring connection.

Figure 3-11. Example of a fieldbus label

External Connections

Figure 3-12. Transmitter Terminal Block (Non-IS Wiring)

Non-Intrinsically Safe Wiring

- 1. Connect fieldbus wires to terminal 1 and 2 on the X1 side. These terminals are marked BUS terminals. The BUS terminals are polarity insensitive.
- 2. Connect the power wires to terminal 3 and 4 on the X1 side. These wires are separate from the fieldbus wires.

Intrinsically Safe Wiring

NOTE: 1-2= BUS Connection 3-4 = Secondary Analog output 5-7 = Display Unit (Optional) A= Ground Terminal for Display Panel

- 1. Connect fieldbus wires to terminals 1 and 2 on the X2 side. These terminals are marked BUS terminals. The BUS terminals are polarity insensitive.
- 2. Connect the power wires to terminal 3 and 4 on the X1 side. These wires are separate from the fieldbus wires.

NOTE

X1

Do not ground out the live signal wiring to the housing when working on a segment. Grounding the communication wires may result in temporary loss of communication with all devices on the segment.

Hazardous Locations

Figure 3-13. Transmitter Terminal Block (IS Wiring)

Grounding

Refer to Appendix B: Product Certifications.

Signal wiring of the fieldbus segment can not be grounded. Grounding out one of the signal wires will shut down the entire fieldbus segment.

Shield Wire Ground

To protect the fieldbus segment from noise, grounding techniques for shield wire usually require a single grounding point for shield wire to avoid creating a ground loop. The ground point is typically at the power supply.

Connecting fieldbus devices

Figure 3-14. Rosemount 5600 Radar Transmitter Field Wiring

Configuration with Radar Master (in a fieldbus system hooked up to the device Sensor Bus Port).

CONNECTING THE 2210 DISPLAY UNIT

The Rosemount 2210 Display Unit can be factory mounted on the 5600 Series Radar Level Transmitter enclosure or remotely mounted. The Display Unit can be used for configuration of the transmitter as well as for displaying tank data (see Section 7: 2210 Display Unit Configuration for information on how to operate the transmitter by using the Display Unit).

Figure 3-15. Rosemount 2210 Display Unit Connection

Reference Manual 00809-0100-4024, Rev BA September 2005

The Display Unit is connected to the Intrinsically Safe Junction Box on the front of the transmitter head:

Figure 3-16. Intrinsically safe junction box

The Display Unit is offered in three versions:

- · Mounted on the transmitter
- Remote mounted up to 330 ft (100m)
- Remote mounted with Temperature option card in it. This card allows for up to 6 temperature sensors to be hooked up. See "Temperature Measurement" on page 3-14 for temperature connections.

Connect the Display Unit to the X2 terminal in the Intrinsically Safe Junction Box by the following four wires:

- Grounding wire to the ground terminal
- Signal wires to terminal 6 and 7
- Supply voltage to terminal 5

Figure 3-17. Connection of junction box with and without temperature option

Connecting the Rosemount 2210 Display Unit

- 1. For power supply connect a wire between terminal block X2, position 5 and terminal block X12, position 1.
- 2. For communication connect a wire between terminal block X2, position 6 and terminal block X12, position 2, and a wire between terminal block X2 position 7 and terminal block X12 position 3.
- 3. Finally for grounding connect a wire from the IS Ground screw in the X2 terminal compartment to terminal block X12 position 4.

For temperature measurements you can use 1-3 3-wire RTD spot elements or 1-6 3-wire RTDs with common return. The sensors are connected to nozzle X17 and X18 on the optional TP40 board. Depending on the type of sensor that is used, different jumpers must be set on nozzles X24, X25, X26, X27 and X28, see Figure 3-18, Figure 3-19, and Figure 3-20.

Figure 3-18. Overview of the TP40 board

Temperature

Measurement

Closed -Open ٠ в • • • • C X18 <u>X25</u> X24 X17 0 X26 目12345678 Έ ©) (© 12345678 X11 X28 X27 X12 (+) 1234 (+) Position 2 Ð **RDU40 TP40** 3 Position 1

Spot elements 3-wire independent

Figure 3-19. Connecting the sensors - Spot Elements

Jumper Settings	
X24	A, B, C open
X25	A, B, C closed
X26	position 1
X27	position 1
X28	position 1

Multiple spot elements 3-wire common return

Figure 3-20. Connecting the Sensors - Multiple Spot Elements

Jumper Settings	
X24	A, B, C closed
X25	A, B, C closed
X26	position 2
X27	position 2
X28	position 2

Reference Manual

00809-0100-4024, Rev BA September 2005

Section 4 Configuration

Antenna	page 4-3
Tank Geometry	page 4-5
Analog Output	page 4-7
Process Conditions	page 4-9
Temperature Measurement	page 4-9
Volume Calculation	page 4-10
Advanced Functions	page 4-11

Safety Messages

Procedures and instructions in this section may require special precautions to ensure the safety of the personnel performing the operations. Information that raises potential safety issues is indicated by a warning symbol (\triangle). Please refer to the following safety messages before performing an operation preceded by this symbol.

Explosions could result in death or serious injury:

Verify that the operating environment of the transmitter is consistent with the appropriate hazardous locations certifications.

Before connecting a HART-based communicator in an explosive atmosphere, make sure the instruments in the loop are installed in accordance with intrinsically safe or non-incendive field wiring practices.

Do not remove the transmitter cover in explosive atmospheres when the circuit is alive.

www.rosemount.com

OVERVIEW	To be able to fully utilize the 5600 Radar Level transmitter it has to be properly configured. To configure the transmitter access the configuration parameters and assign them appropriate values. In this section you will find the parameters used and how they affect your application. The preferred user interface for the configuration is the Rosemount Radar Master software. See "Safety Messages" on page 5-1. Configuration can also be performed using the:
	AMS / 375 Field Communicator (see Section 5: HART Configuration)
	 Foundation Fieldbus (see Section 6: FOUNDATION Fieldbus Configuration)
	 2210 Display Unit (see Section 7: 2210 Display Unit Configuration)
	 DeltaV (see Section 6: FOUNDATION Fieldbus Configuration)
	or others
	Limited support for various configuration parameters may apply when using certain configuration tools.
Basic Configuration	The parameters are divided into several categories listed below. Configuration includes specification of parameters for:
	"Antenna" on page 4-3
	"Tank Geometry" on page 4-5
	 "Analog Output" on page 4-7
	 "Process Conditions" on page 4-9
	 "Temperature Measurement" on page 4-9
	 "Volume Calculation" on page 4-10
Advanced Configuration	When the basic configuration is done the transmitter will be optimized for your application. However, in some cases the transmitter must be further configured using the Advanced Functions (this may affect the previous basic configuration by updating some parameters already set).

"Advanced Functions" on page 4-11

ANTENNA

For the antenna a few choices are available. The type of antenna must always be selected and, if applicable, corresponding type of tank sealing to be used. User Defined is for non-standard antennas only.

The following parameters are used:

Hold Off Distance The (UNZ) defines how close to the transmitter's reference point a level value is accepted. Normally, the Hold Off Distance is set automatically and does not need to be changed. However, if there are disturbing echoes in the upper part of the tank, for example from the tank nozzle, you can increase the Hold Off Distance in order to avoid measurements in the region close to the antenna. (See "Setting the Hold Off Distance" on page 2-39).

	Hold Off Distance (UNZ)	5600/HOLDOFF DISTANCE. TIF
Pipe Inner Diameter	The figure is used to compensate for the lower micro propagation speed inside the pipe. An incorrect valu scale factor error. Only valid for pipe antennas or cor existing still-pipe. If locally supplied still-pipes are use the inner diameter is noted before installation of the	owave e will give a ne antennas in ed, make sure pipe.
Tank Connection Length	The (TCL) parameter is entered for antenna type Us only. For standard antennas the TCL value is set autor the 500 mm extended cone use the TCL_{ext} values in (See "Setting the Tank Connection Length (TCL)" on	er Defined omatically. For 1 Table 4-2. 1 page 2-38).

Antenna Type	TCL	Hold Off
User Defined	0.000 (0.000)	0.000 (0.000)
Rod 100	23.62 (600)	23.43 (595)
Rod 250	30.83 (780)	29.06 (738)
Cone 3" PTFE	18.70 (475)	4.72 (120)
Cone 4" PTFE	18.70 (475)	6.69 (170)
Cone 6" PTFE	18.70 (475)	11.02 (280)
Cone 8" PTFE	18.70 (475)	15.75 (400)
Cone 3" Quartz	20.28 (515)	4.72 (120)
Cone 4" Quartz	20.28 (515)	6.69 (170)
Cone 6" Quartz	20.28 (515)	11.02 (280)
Cone 8" Quartz	20.28 (515)	15.75 (400)
Pipe with Cone PTFE	18.70 (475)	2.36 (60)
Pipe with Cone Quartz	20.28 (515)	2.36 (60)
Parabolic	31.22 (793)	7.87 (200)
Process Seal 4" PTFE	22.17 (563)	7.87 (200)
Process Seal 6" PTFE	24.53 (623)	7.87 (200)

Table 4-1. Hold Off Distance Default Value inches (millimeters)

Table 4-2. TCL_{ext}, for standard extended lengths, 500 mm

Sealing	3 inch Cone	4 inch Cone	6 inch Cone
PTFE	0.019 (0.489)	1.90 (0.482)	1.88 (0.477)
Quartz	2.08 (0.529)	2.06 (0.522)	2.04 (0.517)

TANK GEOMETRY

For Tank Geometry the following basic configuration must be performed:

Tank Height (R)	The Tank Height is c reference point (top- reference point (zero	lefined as the distance betw side of the tank nozzle) an o level).	ween the upper d the lower
	•		Transmitter's Reference Point
			-
	Tank Height (R)		
	Zero Level 👗		
Tank Type Tank Bottom Type	By defining Tank Typ some parameters ar for a specific combin tank types vertical co- valid. For tank types parameter Tank Bottom between 10 and 30 of degrees but there ar heating coils) right b	be and Tank Bottom Type d e set. Through this the trans ation of Tank type and Tan ylinder and cubical, all tank horizontal cylinder and spl om Type is not used. Type flat inclined if the bott degrees. If the inclination is e disturbing objects on the eneath the transmitter use	lefault values for smitter is optimized k Bottom Type. For bottom types are herical, the com inclination is s less than 10 tank floor (like this selection.

The following combinations of Tank Type and Tank Bottom Type are valid:

Table 4-3. Tank Bottom

Advanced Tank Geometry Configuration

Advanced configuration is done through the following parameters:

	Distance Offset (G)	The Distance Offset (G) is defined as the distance between the upper reference point and the flange (the flange is referred to as the Transmitter's Reference Point). You can use the Distance Offset to specify your own reference point at the top of the tank. Set the Distance Offset to zero if you want the flange as upper reference point. The Distance Offset is defined as positive if you use an upper reference point above the Transmitter's Reference Point. The Distance Offset is used when the measured level by the transmitter should correspond with the level value obtained by hand-dipping.
	Minimum Level Offset (C)	The Minimum Level Offset (C) defines a lower null zone which extends the measurement range beyond the Zero Level Reference Point down to the tank bottom. The Minimum Level Offset is defined as the distance between the zero level (Tank Level Reference Point) and the minimum accepted level and tank bottom. Set the Minimum Level Offset to zero if you use the tank bottom as zero level reference point. If the zero level is not defined as the tank bottom and instead is an elevated point as the datum plate, you need to define the Minimum Level Offset. Note: The Minimum Level Offset can not be negative.
	Calibration Distance	The Calibration Distance is by default set to zero. It is used to adjust the transmitter so that measured levels match hand dipped product levels. Normally a minor adjustment is necessary. There may for example be a deviation between the actual tank height and the value stored in the transmitter database.
	Show Negative Values as Zero	Set this parameter if you want levels below the reference point at the bottom of the tank to be displayed as zero. This parameter can be used if you have set a Minimum Level Offset distance in the tank geometry configuration.

ANALOG OUTPUT

The 5600 has the possibility to handle two analog outputs which can be separately configured.

However, if your transmitter is equipped with a primary 4-20 mA HART output, you must use Analog Output 1. (Analog Output 1 is not available for primary output when using other bus communication protocols than HART).

Output Source	Select the source to control the analog output.
Upper Range Value Lower Range Value	Enter the range values that correspond to the analog output values 4 and 20 mA. You can specify any values as long as the Upper Range Value is above the Lower Range Value. If the measured value goes beyond the measurement range, the transmitter enters the alarm mode.
Alarm Mode	Choose the desired Alarm Mode. The Alarm Mode specifies the analog output state when a measurement error occurs or when the measured value is out of range. High: the output current is set to 22 mA. Low: the output current is set to 3.8 mA. Freeze Current: the output current is set to the present value at the time when the error occurs. Binary High: the output current is 4 mA under normal conditions. If there is a measurement error, or when the source signal is out of range, the output current is 20 mA. Binary Low: the output current is 20 mA under normal conditions. If there is a measurement error, or when the source signal is out of range, the output current is 20 mA under normal conditions. If
Disable Limit Alarm if Out of Range	If the detected limit is out side the upper or lower limit, setting this parameter suppresses the analog output from going into alarm mode.

Figure 4-1 illustrates how the analog output signal is related to the actual measured product level and the specified upper and lower limits. As illustrated, if the source signal exceeds the Upper limit or falls below the Lower limit, the output current is set according to the specified Alarm Mode settings.

If your transmitter is equipped with an optional analog output (Analog Output 2), configure it as described above.

Figure 4-1. Alarm Mode Settings

Analog Output current as a function of product level for different alarm mode settings. The shaded area indicates analog output in Alarm mode. The graphs are valid when Disable Limit Alarm if Out of Range is not set.

PROCESS CONDITIONS

Describe the conditions in your tank according to the Process Conditions listed below. For best performance choose only if applicable and not more than two options.

Rapid level changes	Optimize the transmitter for measurement conditions where the level changes quickly due to filling and emptying of the tank. A standard configured transmitter is able to track level changes of up to 4 inch/s (100 mm/s). When the Rapid Level Changes check box is marked, the transmitter can track level changes of up to 8 inch/s (200 mm/s).
Turbulent Surface	This parameter should be used if the tank shows a turbulent surface. The reason for the turbulence might be splash loading, agitators, mixers, or boiling product. Normally the waves in a tank are quite small and cause local rapid level changes. By setting this parameter the performance of the transmitter will be improved when there are small and quickly changing amplitudes and levels.
Foam	Setting this parameter optimizes the transmitter for conditions with weak and varying surface echo amplitudes, which are typical for foam.
Solid Products	Setting this parameter optimizes the transmitter for solid products, for example concrete or grains, which are not transparent for radar signals. For instance, this parameter can be used when the application is a silo with product buildup.

TEMPERATURE MEASUREMENT

Up to six temperature sensors can be connected to the 2210 Display Unit. You can use 1-3 spot elements or 1-6 multiple spot elements. All temperature sensors must be of the same type, for example, the Pt100 or CU90. See "Temperature Measurement" on page 3-14 for information on how to connect the temperature sensors.

Use one of the following temperature measurement conversion methods:

- PT100
- CU90
- User Defined Linearization Table. The sensor characteristics are specified in a table of corresponding resistance and temperature values.
- User Defined Formula. The sensor characteristics are specified in a mathematical formula: R=R₀ *(1+A*T+B*T²) where R is the resistance at temperature T, R₀ is the resistance at zero degrees Centigrade and A and B are constants.

Sensor Mounting Level 1-6	Enter the level (from the tank bottom) at which each sensor is mounted. The first sensor should be mounted in the lowest position in the tank, the second above the first and so on.
Number of Sensors	Enter the number of temperature sensors connected to the Display Unit. You can have up to six sensors connected. If you choose zero sensors temperature measurement is disabled.

VOLUME CALCULATION

The Volume Calculation is performed by using one of two methods: predefined tank shape or strapping table. The strapping table is an optional function. If this function is required, please contact your local Rosemount representative.

To configure the 5600 transmitter for volume calculations you have to choose a Volume Calculation method.

Select one of the volume calculation methods. Choose one of the ideal tank shape options if approximation of your tank with an ideal tank shape provides sufficient accuracy. The strapping table option can be used for an arbitrary tank shape. You can enter levels and corresponding volumes to obtain a close match between the actual and the calculated volume. This option should be used in cases where the tank shape deviates significantly from an ideal sphere or cylinder, or when you require high accuracy.

NOTE

The transmitter is delivered with a code that enables the ordered software options including strapping table volume calculation. If you wish to change the set of available options, contact your local Rosemount representative.

Ideal Tank

Use this option if approximation of your tank with an ideal tank shape (assuming no dished ends) provides sufficient accuracy. Enter the following parameters:

- Tank Diameter (and the length if it is a horizontal tank).
- Volume Offset: Use this parameter if you do not want zero volume and zero level to match (for example if you want to include volume below the zero level).

Strapping Table

- Enter levels and corresponding volumes starting at the bottom of the tank. These figures can typically be obtained from tank drawings or from certificate from the tank manufacturer. If the level//volume table is based on a reference point that is different from your reference point, you can use Level Offset and Volume Offset. The Volume Offset is added to every value in the corresponding column.
- Select which interpolation method to use for calculating volumes between the strapping points. Normally, linear interpolation is the preferred method. For spherical tanks, quadratic interpolation may result in a smaller error. By using linear interpolation and a sufficient number of values in the strapping table, the interpolation error can normally be reduced to a minimum.

ADVANCED FUNCTIONS

Disturbance Echo

Handling

In some cases the transmitter must be further configured using the Advanced Functions. Please note this may affect the previous basic configuration by updating some parameters already set.

There are three methods available for Disturbance Echo Handling:

- General Amplitude Threshold
- Customized Noise Threshold Table (Amplitude Threshold Points [ATP] table)
- · Registration of False Echoes

There are guidelines on when to register a false echo and what the Auto Configuration does.

Figure 4-2. Disturbance Echoes

The False Echo function is used to improve the performance of the transmitter when the surface is close to a horizontal surface of a stationary object in the tank. The object causes an echo when it is above the surface. When the echoes from the surface and the object are close to each other, they might interfere and cause a decrease in performance.

It is possible to store the positions of the disturbing objects in the memory of the transmitter. When the surface is passing by a disturbing object, the transmitter can measure with a higher reliability, when the position of the object is registered.

Use a spectrum plot to find the disturbance echoes. Remember to update it several times to get the whole picture of disturbance echoes in the tank. Do not base the false echo registration on only one updated spectrum plot. (See Figure 4-3).

Figure 4-3. Spectrum plot for typical calm conditions

General	Echoes with amplitudes below the general amplitude threshold will be
Amplitude	disregarded. Recommended threshold values are:
Threshold	 Calm conditions: no turbulence, foam or condensation. Set amplitude threshold to approximately 20% of surface echo amplitude.
	 Foam, agitators, or low product DC: the surface echo signal may drop to 200-300 mV during processing in tank. A threshold value of about 150 mV is recommended.
	Note:
	These figures are estimations. Significantly different figures may have to be used in many cases.
	Some further considerations are:
	 If water test is performed before the product enters the tank, there is probably a difference in signal amplitude between the water and the product. Use the signal amplitude for the product to set the amplitude threshold.
	 A moving surface may cause a decrease in signal amplitude

• A moving surface may cause a decrease in signal amplitude.

Customized Noise Threshold Table (ATP-table)	You can filter out weak disturbing echoes by creating a noise threshold table. This technique should only be use in special situations, for example at the bottom of tanks with weak disturbing echoes. In such tanks the transmitter may lock at disturbances close to the bottom when the tank is empty. Setting up a noise threshold in the region will guarantee that the transmitter starts following the surface when the tank is filled again. Make sure the surface echo amplitude in the bottom region is always stronger than the noise threshold. (See Figure 4-4) Also, this function can be used in areas where occasionally there are strong echoes present. For those large areas registering a False Echo may not be sufficient. Furthermore, the ATP-table can be used to remove influence for the tank nozzle or a still-pipe inlet at the top of the tank. The Hold Off Distance (UNZ) can also be used to manage such cases. Do not create noise thresholds around echoes which are already registered as interfering echoes. The general amplitude threshold is the lower limit of the noise threshold table. (See Figure 4-4).
Registration of False Echoes	 The False Echo function allows you to let the transmitter register disturbing echoes caused by objects in the tank. This makes it possible to detect a product surface close to a disturbance echo even if the surface echo is weaker than the disturbing echo. (See Figure 4-5). When should I register? See the following recommendations before you register new interfering echoes: Make sure that a correct amplitude threshold is set before you register any disturbance echoes. See description of the SpectraThreshold window. Keep the number of registered echoes to a minimum. Compare the list of interfering echoes with the tank drawing or by visible inspection of the tank. Note if there are objects like beams, heating coils, agitators, etc. which correspond to the found echoes. Only register echoes which can be clearly identified as objects in the tank. Make sure that the level is stable before you register a disturbance echo. A fluctuating level may indicate a temporary disturbance which is not due to an interfering object. Do not register a disturbance echo if the amplitude is significantly smaller than the amplitude of the surface echo when the surface is at the same level as the disturbance. (In some cases weak disturbance echoes can be filtered out by creating a noise threshold table. It may be necessary to register new disturbance echoes at a later stage when objects have become visible due to surface movement.

Figure 4-4. Noise threshold

Rosemount 5600 Series

Figure 4-5. False Echoes

Bottom Echo Handling

Bottom Echo Visible	This paramet tank bottom to be treated as surface echor set searching close to the ta echo is visible for the bottom flat bottom ta parameter in If Empty Tank Bottom Type Tank Bottom always set. If the Empty to Bottom Echor types. Howey Echo Visible	er is automatically ype. By setting this a disturbance ecl es close to the tan for a lost surface ank bottom. Only se ows scenarios (ch e. Always check if n at empty tank be nks have checkbo Advanced Service (Handling is set to controls the settin Type flat, the Bott tank Handling fund Visible parameter ver, the Tank Botto set.	set depending on s parameter the bo ho to facilitate track k bottom. If this pa echo is restricted set this parameter necked tanks) whe the transmitter sh fore marking the c box marked as defa box marked	a tank type and ottom echo will cking of weak arameter is not t to a region r if the bottom ows a value theckbox. Only full. Set this hoice of Tank o Visible. For barameter is automatic, the or all tank vs has Bottom
				5600_C_06A.EPS

Invalid Level Alarm Is Not Set If Tank Is Empty If the surface echo is lost close to the bottom of the tank, setting this parameter suppresses the "invalid" display.

00809-0100-4024, Rev BA September 2005

Full Tank Handling

Invalid Level Alarm Is Not Set If Tank Is Full If the surface echo is lost close to the top of the tank, the level value will normally be displayed as "invalid". Set this parameter to suppress the "invalid" display. Note By setting this parameter the analog output will not enter alarm mode for invalid levels close to the tank bottom or close to the antenna.

Empty Tank Handling

Empty Tank Detection Area	The Empty Tank Handling is a function for handling situations
	when the surface echo is lost close to the bottom. If the surface
	echo is lost the function makes the transmitter present a
	zero-level measurement, and an alarm is created, unless this
	alarm has been blocked.
	This function is activated by default if you have selected one of
	the following Tank Bottom Types: Cone, Dome, Flat Inclined, or
	Unknown. This function also requires that the Bottom Echo
	Visible checkbox is not marked. If it is marked the function is
	disabled.
	The transmitter will search for the surface echo within the
	Empty Tank Detection Area. The Empty Tank Detection Area is
	calculated as a percentage of Tank Height (R) + Minimum Level
	Offset (C) - Distance Offset (G). It has a lower limit of 400 mm
	and a higher limit of 1000 mm. Used Empty Tank Detection
	Area is shown in Advanced Setup and can be adjusted
	manually if required.
	Since the transmitter will search for the surface echo in the
	Empty Tank Detection Area, it is important that there are no
	disturbances in this area. If there are disturbances it may need
	to be filtered out. (See "Disturbance Echo Handling" on
	page 4-11 and "Tank Geometry" on page 4-5.

Surface Tracking

Slow Soorah	This variable controls have to enarch for the surface if a surface
	echo is lost. With this parameter set the transmitter starts searching for the surface at the last known position, and gradually increases the width of the search region until the surface is found. If this variable is not set the transmitter searches through the whole tank. This parameter may typically be used for tanks with turbulent conditions
Slow Search Speed	If the surface echo is lost, the transmitter starts to search around the last known level to find the surface echo again. This parameter indicates how fast it should expand the search window.
Double Surface	Indicates that there are two liquids or foam in the tank resulting in two reflecting surfaces. The upper liquid or foam layer must be partly transparent to the radar signal. If this function is activated, you can specify which surface to select by using the Select Lower Surface parameter.
Upper Product DC	This is the dielectric constant for the upper product. A more precise value results in better accuracy for the lower surface level.
Level above min distance possible	If the surface echo is lost in the vicinity of the antenna, full tank is indicated and searching for the surface echo is limited to a region close to the antenna.
Select Lower Surface	This function should only be used if Double Surface is set. If Select Lower Surface is set the lower surface will be presented as the product surface. If not set the upper surface is tracked.
Echo Timeout	Use Echo Timeout to define the time in seconds before the transmitter will start to search for a surface echo after it has been lost. After an echo has been lost, the transmitter will not start searching or set Invalid Level until this time has elapsed.
Close Distance Window	This parameter defines a window centered at the current surface position in which new surface echo candidates can be selected. The size of the window is ±CloseDist. Echoes outside this window will not be considered as surface echoes. The transmitter will immediately jump to the strongest echo inside this window. If there are rapid level changes in the tank, the value of the Close Distance Window could be increased to prevent the transmitter from missing level changes. On the other hand, a value too large might cause the transmitter to select an invalid echo as the surface echo.

Double Bounce Possible

Some radar waves are reflected against the tank roof and back to the surface before they are detected by the transmitter. Normally, these signals have a low amplitude and are therefore neglected by the transmitter. For spherical and horizontal cylinder tanks, in some cases the amplitude may be strong enough to lead the transmitter to interpret the double bounce as the surface echo. By setting the Double Bounce parameter this type of measurement situation may be improved. This function should only be used if the problem of double bounces can not be solved by changing the mounting position.

Filtering

Distance Filter Factor	The Distance Filter Factor defines how much the level value should be filtered. A low factor setting will give the new level value by adding a small portion (for instance 1%) of the level change to the previous level value. A high factor setting typically takes the latest measurement and presents it as the new level. This implies that a low factor setting makes the level value steady but the transmitter reacts slower to level changes in the tank. A high factor setting makes the transmitter react quickly to level changes but the level value can be somewhat jumpy.
Activate Jump Filter	If the surface echo is lost and a new surface echo is found, the Jump Filter tells the transmitter to wait for some time before it jumps to the new echo. During that time the new echo has to be a valid echo. The Jump Filter does not use the Distance Filter Factor and can be used in parallel to the Least Square Filter or the Adaptive Filter. The Jump Filter is typically used for applications with turbulent surface and makes the echo tracking work smoother as the level passes the agitator.
Activate Least Square Filter	This filter calculates the new level value according to the least square method and will give increased accuracy for slow filling or emptying of tanks. The level value will follow the surface with high accuracy and without delay as the level changes. When the level stabilizes at a certain level, the Least Square Filter makes the level move somewhat further before it aligns to the correct level value.
Activate Adaptive Filter	The Adaptive Filter is tracking the level fluctuations, and is continuously adjusting the filter grade accordingly. The filter can preferably be used in tanks where fast tracking of level changes are important, but where turbulence occasionally cause unstable level values

Reference Manual

00809-0100-4024, Rev BA September 2005

Rosemount 5600 Series

HART Configuration Section 5 Safety Messages page 5-1 Safety Messages page 5-1 Hand-Held Communicator page 5-7 SAFETY MESSAGES Procedures and instructions in this section may require special precautions to ensure the safety of the personnel performing the operations. Information that raises potential safety issues is indicated by a warning symbol (\triangle). Please refer to the following safety messages before performing an operation preceded by this symbol. Explosions could result in death or serious injury: Verify that the operating environment of the transmitter is consistent with the appropriate hazardous locations certifications. Before connecting a HART-based communicator in an explosive atmosphere, make sure the instruments in the loop are installed in accordance with intrinsically safe or non-incendive field wiring practices. Do not remove the transmitter cover in explosive atmospheres when the circuit is alive. **OVERVIEW** The Rosemount 5600 Radar Level Transmitter uses AMS Suite[™] as a configuration tool. Access http://www.emersonprocess.com/ams/ for literature related to configuring the Rosemount 5600 Radar Level transmitter.

ROSEMOUNT

www.rosemount.com

PC CONFIGURATION SOFTWARE RADAR MASTER

The Rosemount Radar Master is an interactive and powerful configuration tool that assists you in properly setting up a Rosemount 5600 for the application it is mounted on. This tool is shipped with every order and offers assistance for users of all levels, from beginners to more experienced users. The Installation Wizard guides you through a basic setup including the necessary steps to get a straight forward application up and running. Other sections in the software allows for a custom setup and includes features such as:

- An extensive on-line help, eliminating the need for a manual in paper. This on-line help is not only a description of the software itself but also includes guidelines of how to configure the transmitter.
- Off-line installation, for configuration and setup of transmitters that have not been physically installed or powered up.
- A Spectrum Plot describes the situation and conditions in the tank the way the transmitter views them.
- Logging features is where you can log measured data and other relevant data.
- · Use the Advanced setup support for your more difficult applications.

The program on the CD will automatically start and suggest an installation of the Radar Master software. You will need to restart your PC prior to running the Radar Master program.

NOTE

For Windows 2000 and Windows XP you need to set the Serial Port buffers to 1. Follow the instructions below:

- 1. Right click on My Computer and choose Properties.
- 2. Choose the tab Hardware.
- 3. Click on the button Device Manager.
- 4. Navigate to Ports in the list of hardware.
- 5. Right click on Serial Port COM 1 and choose Properties.
- 6. Choose the tab Port Settings.
- 7. Click Advanced.
- 8. Drag the slider for Receive Buffer and Transmit Buffer to 1.
- 9. Click OK.
- 10. Reboot the Computer.
- 11. Repeat for COM 2 if available.

Start the Radar Master

- 1. From the Start menu click Programs > Saab Rosemount > Rosemount Radar Master or click the RRM icon in the Windows workspace. Now RRM searches for the transmitter.
- 2. When the transmitter is found press Yes to connect. If communication does not work check that the correct COM port is connected on the computer and that the COM port is properly configured.
- 3. In the Radar Master Status Bar verify that RRM communicates with the transmitter (see Figure 5-1).

Installation

Figure 5-1. On-line vs. Off-line Connection to device

Main Configuration Icons

Figure 5-2. Device Configuration Icons

Wizard

Guided setup including the basic configuration settings such as the HART Tag, Antenna Type, Tank Geometry, Variable assignments, Volume, etc.

General

Here you configure the Units settings to work with, HART Tag and descriptors, Remote display Units, etc.

Figure 5-3. General Configuration

Tank

This icon allows you to configure Antenna Type, set the Geometry settings for the tank, Environment settings, and Volume if applicable.

Figure 5-4. Radar Master Tank Configuration

Output

This is the Icon that handles the Analog Outputs and Variable assignments as well as Temperature sensor configuration.

Figure 5-5. Output Configuration

Analog Out 1	Analog Out 2	Tempenature)
Output Source (PH) Lond Upper Range Video (20 ok) 2000 mm Lones Range Video (20 ok) 0 mm Alsen Hinds High-Conest		Advanced 11	
			4600 10 AA TIF

Rosemount 5600 Series

Echo Tuning

This window opens up the Tank Spectrum picture for echo tuning of Disturbance echoes, setting Noise Thresholds, etc.

E.Spectra	um Analyzer - [LT-01]		
	Configuration Mode	View/Record Mode	File Mode
1300 A	implitude, mV		
1200	P1 Surface		Contraction
1100			Legend Uptions
1000			Echo Curve Echo Peaks
900			
800			F D Fabe Echo Areas
700			F Hold Of Distance (UN2)
600		P3 Unknown	E Zero Reference E Max Meas Distance
500			Previous Echo Curve(s)
400			E Echo Peak Trail
300			Peak Info B. D.
200			
100			
0.0	1000 2000 3000 4000	5000 6000 7000 8000 9000 Distance, nm →	
Read		Notel Right Click plot for more optional	Core Heb

Figure 5-6. Radar Master Echo

Advanced

This icon gives you access to advanced configuration functions. Many are automatically set based on Tank Geometry and Environment settings, but for some tough applications the user can manually edit the settings if needed. Examples are Surface echo tracking functions, Empty tank handling, Filtering etc.

Use-Automatic Eche Tracking Settings Eche Time Dut	P Use-Automatic Echo Trad RFT Match Threshold	king Settings (Advanced)	
30 s Close Distance 500 mm	300 mm MULT Match Threshold 300 mm		
P Stor Seach Seach Speed	Median Files Size 3.00 Min-Update Relation		
1 0.00 841	, .,		

Figure 5-7. Advanced Configuration

Tuning

00809-0100-4024, Rev BA September 2005

HAND-HELD COMMUNICATOR

Commissioning consists of testing the transmitter and verifying transmitter configuration data. The 5600 Series can be commissioned either before or after installation.

To commission, connect the transmitter and the Communicator. Make sure the instruments in the loop are installed according to intrinsically-safe or nonincendive field wiring practices before connecting a communication in an explosive atmosphere. Connect Communicator leads at any termination point in the signal loop.

To enable communication, a resistance of at least 250 ohms must be present between the Communicator loop connection and the power supply. Do not use inductive-based transient protectors with the 5600 Series.

When using a hand-held Communicator, any configuration changes made must be sent to the transmitter by using the "Send" key (F2). AMS configuration changes are implemented when the "Apply" button is clicked. See Figure 3-7, Figure 3-8, Figure 3-9, and Figure 3-10 on page 3-8 to connect the Communicator and transmitter.

For more information on the 275 HART Communicator see document 00275-8026-0002 and for the 375 Field Communicator see document 00375-0047-0001.

Rosemount 5600 Series

Figure 5-8. HART Communicator Menu Tree for the Rosemount 5600 Radar Level Transmitter

Rosemount 5600 Series

HART Fast Keys

	Function	HART Fast Key
	Antenna Type	1, 3, 3, 1
	Basic Volume	1, 3, 3, 7
	Device Information	1, 4, 1
	Diagnostics	1, 2, 1
	Distance Unit	1, 3, 1, 1
	Poll Address	1, 4, 2, 1
	Primary Variable	1, 1, 1, 1
	PV Alarm Mode	1, 3, 4, 1, 4
	PV Lower Range Value	1, 3, 4, 1, 3
	PV Upper Range Value	1, 3, 4, 1, 2
	PV Source (Assignment)	1, 3, 4, 1, 1
	Software Version	1, 2, 2, 3
	Surface Search	1, 2, 3
	Tank Height	1, 3, 3, 3
	Temperature	1, 3, 3, 8
Setting the Loop to Manual	Whenever sending or requesting data that the output of the transmitter, set the proce HART Communicator will prompt you to so necessary. Acknowledging this prompt do prompt is only a reminder; set the loop to	at would disrupt the loop or change ess application loop to manual. The set the loop to manual when bes not set the loop to manual. The manual as a separate operation.
Connections and Hardware	The HART Communicator exchanges info from the control room, the instrument site the loop. The HART Communicator shoul transmitter. Use the loop connection ports Communicator. The connections are non-	ormation with the Rosemount 5600 e, or any wiring termination point in Id be connected in parallel with the s on the rear panel of the HART -polarized.
	Do not make connections to the serial po explosive atmosphere.	rt or NiCad recharger pack in an

Using a Hand Held Communicator

Level Configuration Example

NOTE

Remember, when using a hand held communicator, you must **send** the data before configuration changes will take effect.

To configure the Rosemount 5600 to report LEVEL (analog output is linear to level) with the transmitter wired as on page 3-6, connect the hand-held communicator as shown.

Set Transmitter Units

HART Comm	1, 3, 1
-----------	---------

Set transmitter units:

- ft
- m
- in
- cm
- mm

Set Reference Transmitter Height

HART Comm	1, 3, 3, 3

When setting the Reference Transmitter Height, keep in mind that this value is used for all measurements performed by the Rosemount 5600.

Set PV 4 and 20 mA Points

When setting the range values, it is possible to enter the values directly, or to use actual values.

NOTE

The primary variable must be set to *level* (factory default).

Reference Manual

00809-0100-4024, Rev BA September 2005

Section 6 FOUNDATION Fieldbus Configuration

Introduction	page 6-1
Assigning Device Tag and Node Address	page 6-3
Configure Transmitter using Delta V	page 6-3
Configure the Al Block	page 6-10
Application Examples	page 6-13
Configuration Using the Sensor Bus Port	page 6-16

INTRODUCTION

Figure 6-1 illustrates how the signals are channelled through the transmitter.

Figure 6-1. Function Block Diagram for the Rosemount 5600 Radar Transmitter with FOUNDATION fieldbus

In the number of periodic writes to an static or non-volatile parameters such as HI_HI_LIM, LOW_CUT, SP, TRACK_IN_D, OUT, IO_OPTS, BIAS, STATUS_OPTS, SP_HI_LIM, and so on. Static parameter writes increment the static revision counter, ST_REV, and are written to the device's non-volatile memory. Fieldbus devices have a non-volatile memory write limit. If a static or non-volatile parameter is configured to be written periodically, the device can stop its normal operation after it reaches its limit or fail to accept new values.

ROSEMOUNT

Overview

FOUNDATION Fieldbus

Function Blocks

Each FOUNDATION fieldbus configuration tool or host device has a different way of displaying and performing configurations. Some will use Device Descriptions (DD) and DD Methods to make configuration and displaying of data consistent across host platforms. Since there is no requirement that a configuration tool or host support these features, this section will describe how to reconfigure the device manually.

This section covers basic operation, software functionality, and basic configuration procedures for the Rosemount 5600 Radar Transmitter with FOUNDATION fieldbus (Device Revision 1). For detailed information about FOUNDATION fieldbus technology and the function blocks used in the Rosemount 5600 transmitter, refer to the FOUNDATION fieldbus Block manual (00809-0100-4783).

Resource Block

The Resource block contains diagnostic, hardware, electronics, and mode handling information. There are no linkable inputs or outputs to the Resource Block. See Appendix D: Resource Block for additional information.

Transducer Block

The Transducer block allows a user to view the different parameters, errors, and diagnostics in the transmitter. It also includes information to configure the transmitter for the application it is used in. Refer to the FOUNDATION fieldbus Block manual (00809-0100-4783) for additional information.

Level Transducer Block

The Level Transducer block contains transmitter information including diagnostics and the ability to configure the radar transmitter, set to factory defaults, and restart the transmitter. See Appendix C: Level Transducer Block for additional information.

Register Transducer Block

The Register Transducer Block allows a service engineer to access all database registers in the device. See Appendix E: Register Transducer Block for additional information.

Analog Input (AI) Block

The Analog Input (AI) function block processes field device measurements and makes them available to other function blocks. The output value from the AI block is in engineering units and contains a status indicating the quality of the measurement. The measuring device may have several measurements or derived values available in different channels. Use the channel number to define the variable that the AI block processes and passes on to linked blocks. See "Configure the AI Block" on page 6-10 for additional information.

Reference Manual 00809-00100-4024, Rev BA September 2005

Figure 6-2. Analog-Input Block

OUT=The block output value and status OUT_D=Discrete output that signals a selected alarm condition

ASSIGNING DEVICE TAG AND NODE ADDRESS

The Rosemount 5600 is shipped with a blank tag and a temporary address (unless specifically ordered with both) to allow a host to automatically assign an address and a tag. If the tag or address need to be changed, use the features of the configuration tool. The tools basically do the following:

- 1. Change the address to a temporary address (248-251).
- 2. Change tag to new value.
- 3. Change address to new address.

When the device is at a temporary address, only the tag and address can be changed or written to. The resource, transducer, and function blocks are all disabled.

CONFIGURE TRANSMITTER USING DELTA V

The Rosemount 5600 Radar Transmitter with FOUNDATION fieldbus software is designed to permit remote testing and configuration using the Emerson Process Management DeltaV[™] fieldbus configuration tool, or other FOUNDATION fieldbus host.

NOTE

Device support files for the Rosemount 5600 Radar Transmitter with Foundation fieldbus are available on www.rosemount.com. Correct revision of Device Support Files must be loaded into DeltaV to provide proper functionality.

- 1. Select **DeltaV > Engineering > DeltaV Explorer** from the Start menu.
- 2. Navigate through the file structure to find the transmitter you wish to configure.
- 3. The Fieldbus Device Properties window appears (see Figure 6-3).

FIELDBUS-FBUS_31A

Figure 6-3. Fieldbus device properties

ieldbus Device Properties 🛛 🔯
General Alamer & Displaye
Disection: Feldaus Device
Modified 5 ep 06 2002 02 09:39 PM
Modified by: ADMINISTRATOR
Device lag
SAAB_RADAR_LEVEL
Description
Device ID:
Adden:
Manufacture:
Sign TankBarlar PEO Level Turner W
DK Cancel Help

4. Enter a description of the device properties information in the window.

The wizard is used to do a standard configuration of the device. All settings that are made from this method can also be made manually from the DD information, through the parameters listed below.

Capturing Dollary	MOD
a le Am Déss Néperan les Leb	
Entern	Contrative Total Pacification Lines:
Carlo Contention I former I former I former Constituence Constituen	Non- Openate Macrosofts media: Openate Macrosofts Ma

CONFIGURE THE PARAMETERS

Figure 6-4. List of Function Blocks in **DeltaV Explorer**

- 1. Double click on the TRANSDUCER1100 block icon. The transducer block properties window appears.
- 2. Select the Mode tab.
- 3. Select Out of Service (**OOS**) and deselect **Auto** in the **Target Mode** region of the window.

The parameters you change in the properties window remain highlighted so you can easily track changes.

4. Click the **Apply** button to apply the changes you made.

The software warns you that the changes you made may upset the process and create a dangerous situation in your plant. Before you select **OK**, verify that the control loop is in manual control.

The Actual Mode region changes to OOS.

- 5. A warning window will pop up, click **OK** to return to the DeltaV Explorer.
- 6. Right click on the TRANSDUCER block icon to access the configuration parameters menu.
- 7. Select the parameter you wish to configure, and follow the on-line instructions to complete the configuration.

NOTE

As you make changes to the configuration parameters, the software warns you that the changes you made may upset the process and create a dangerous situation in your plant. Before you select **OK**, verify that the control loop is in manual control.

See Appendix C: Level Transducer Block to change the sensor type and to calibrate the sensors.

8. Repeat Steps 1 through 5 to return the mode of the transducer block to **Auto**.

Process

Figure 6-5. Configuring the Rosemount 5600 Transducer Block (Process Tab)

5600_F_01A.TIF

Values

Figure 6-6. Configuring the Rosemount 5600 Transducer Block (Values Tab)

Figure 6-7. Configuring the Rosemount 5600 Transducer Block (Antenna Tab)

FROM	Tenperature Con	fg Tank.Pi	eventation	Vesion	Service
ESOURCE	Process Va	Autor Antenna Process Value	Geometry Units	Environment	Temperature Volues Status
SOUCEAN100	Level		-		
ISDUCER1200	Distance (Ullage)				
	Volume				
	Level Rate:				
	Signal Strength		2		
	Signal Strength				

Antenna

1	Temperature Config. Tank Presentation Process Values Antenna Geometry	Vesion Service Environment Temperature Values
	Anterios Type Use Defined	
WSDUCERITOR	Advanced	
NSDUCERT200	Tank Connection 0.000000 «Univer	- Dir
	Huld Off Distance (UR2) 0.000000 «Unices	Detance
	Sill Pipe 0.000000 «Unive	
	Sal Pipe 0.00000 «Linkwe	

- 1. Choice of Antenna Type (ANTENNA_TYPE).
- 2. Based on antenna type choice, the different antenna related configuration parameters will be available for configuration. See Table 6-1 for Tank Connection Length (ANTENNA_TCL), and Antenna Pipe Diameter (ANTENNA_PIPE_DIAMETER).

Table 6-1. Parameters that are configurable for each antenna type

ANTENNA_TYPE	ANTENNA_TCL	ANTENNA_PIPE_DIAM	GEOM_HOLD_OFF
User Defined	configurable	configurable	configurable
Cone	factory configured	factory configured	configurable
Pipe	factory configured	configurable	configurable
Rod	factory configured	factory configured	configurable
Process Seal	factory configured	factory configured	configurable

Geometry

Figure 6-8. Configuring the Rosemount 5600 Transducer Block (Geometry Tab)

e of SEOD-SAAB ISEOD TankRadar PRO Level Transmitter Rev. 1 Values ESOURCE Unknown Distance T ÷ Linkoon TRANSDUCER1100 Tark Bottom Type WSDUCERI 200 D.000000 (Unkno Lank Height (R) TR/ Tank Haishi 0.000000 ctUnking Officer (C): 0.000000 -cUnkino 0.000000 (Unkno. 5600_M_01A.TIF Carcel Tine: ÔK.

 Setup the tank type (GEOM_TANK_TYPE) and tank geometry parameters (GEOM_TANK_BOTTOM_TYPE). The following combinations of Tank Type and Tank Bottom Type are valid:

2. Set **Tank Height** (GEOM_TANK_HIGH). The tank height is defined by the difference between the Upper Reference Point (transmitter point) and the Lower Reference Point (zero level). See "Tank Geometry" on page 4-5 for additional information.

Table 6-2. Tank Bottom

Figure 6-9. Tank Height

3. Double click the transmitter you wish to configure/calibrate.

The function blocks within the transmitter appear in the right half of the DeltaV Explorer window (see Figure 6-4).

Environment

Configuration of SEN	TRY (5400 TankRadar SENTRY Level Transmitter Rev. 2)
Endlowedicer of SEN Plocks RESOURCE TRANSDUCERT100 TRANSDUCERT200 TRANSDUCERT200	TRY (5000 TaxARada: SEXTRY Level Travenities Rev. 2) If Is Pocessi Values Geometry Environment LCD Advanced Vesion Senice Processi Canditon Image Report Level Drange Image Taxbulence Image Solid Product Product Dielectric Canater: Frange (>10)
	Time: Current Time: Current Cancel Arroly Bells

- 1. Select the Environment tab.
- 2. Set the process conditions:
 - a. Process dielectric constants (ENV_DICECTR_CONST)
 - b. Process conditions (ENV_ENVIRONMENT)

FOUNDATION Fieldbus

Figure 6-10. Configuring the Rosemount 5600 Transducer Block (Environment Tab)

	Rapid level changes	Optimize the transmitter for measurement conditions where the level changes quickly due to filling and emptying of the tank. A standard configured transmitter is able to track level changes of up to 4 inch/s (100 mm/s). When the Rapid Level Changes check box is marked, the transmitter can track level changes of up to 8 inch/s (200 mm/s).
	Turbulent Surface	This parameter should be used if the tank shows a turbulent surface. The reason for the turbulence might be splash loading, agitators, mixers, or boiling product. Normally the waves in a tank are quite small and cause local rapid level changes. By setting this parameter the performance of the transmitter will be improved when there are small and quickly changing amplitudes and levels.
	Foam	Setting this parameter optimizes the transmitter for conditions with weak and varying surface echo amplitudes, which are typical for foam.
	Solid Products	Setting this parameter optimizes the transmitter for solid products, for example concrete or grains, which are not transparent for radar signals. For instance, this parameter can be used when the application is a silo with product buildup.

CONFIGURE THE AI BLOCK

A minimum of four parameters are required to configure the Al Block. The parameters are described with "Application Examples" on page 6-13.

CHANNEL

Al Block	TB Channel Value	Process Variable
Level	1	CHANNEL_RADAR_LEVEL
Ullage	2	CHANNEL_RADAR_ULLAGE
Level Rate	3	CHANNEL_RADAR_LEVELRATE
Signal Strength	4	CHANNEL_RADAR_SIGNAL_STRENGTH
Volume	5	CHANNEL_RADAR_VOLUME
Average Temperature	6	CHANNEL_RADAR_AVG_TEMP

L_TYPE

The L_TYPE parameter defines the relationship of the transmitter measurement (Level, Distance, Level Rate, Signal Strength, Volume, and Average Temperature) to the desired output of the AI Block. The relationship can be direct or indirect.

Direct

Select direct when the desired output will be the same as the transmitter measurement (Level, Distance, Level Rate, and Signal Strength).

Indirect

Select indirect when the desired output is a calculated measurement based on the transmitter measurement. The relationship between the transmitter measurement and the calculated measurement will be linear.

Indirect Square Root

Select indirect square root when the desired output is an inferred measurement based on the transmitter measurement and the relationship between the sensor measurement and the inferred measurement is square root (e.g. level).

XD_SCALE and OUT_SCALE

The XD_SCALE and OUT_SCALE each include three parameters: 0%, 100%, and engineering units. Set these based on the L_TYPE:

L_TYPE is Direct

When the desired output is the measured variable, set the XD_SCALE to match the OUT_SCALE value.

L_TYPE is Indirect

When an inferred measurement is made based on the sensor measurement, set the XD_SCALE to represent the operating range that the sensor will see in the process. Determine the inferred measurement values that correspond to the XD_SCALE 0 and 100% points and set these for the OUT_SCALE.

L_TYPE is Indirect Square Root

When an inferred measurement is made based on the transmitter measurement and the relationship between the inferred measurement and sensor measurement is square root, set the XD_SCALE to represent the operating range that the sensor will see in the process. Determine the inferred measurement values that correspond to the XD_SCALE 0 and 100% points and set these for the OUT_SCALE.

NOTE

To avoid configuration errors, only select Engineering Units for XD_SCALE that are supported by the device. The supported units are:

Table 6-3. Length

Display	Description
m	meter
ft	feet
in	inch
mm	millimeter

Table 6-4. Level Rate

Display	Description
ft/s	feet per second
m/s	meter per second
m/h	meter per hour

Table 6-5. Temperature

Display	Description
К	Kelvin
°C	Degree Celsius
۴	Degree Fahrenheit

Table 6-6. Signal Strength

Table 6-7. Volume

Display	Description
mV	Millivolt

Display	Description
m ³	Cubic meter
Gallon	US gallon
bbl	barrel
ft ³	Cubic feet

Application Example:

Radar Level Transmitter,

APPLICATION EXAMPLES

Level Value

Situation #1

A level transmitter is measuring the level in a 33ft (10m) high tank.

Figure 6-11. Situation #1 Diagram

Solution #1

Table 6-8 lists the appropriate configuration settings, and Figure 6-12 illustrates the correct function block configuration.

Table 6-8. Analog Input Function Block Configuration for a Typical Level Transmitter

Parameter	Configured Values
L_TYPE	Direct
XD_SCALE	Not Used
OUT_SCALE	Not Used
CHANNEL	1 Level

Figure 6-12. Analog Input Function Block Diagram for a Typical Level Transmitter

FIELDBUS-FBUS_04A

Rosemount 5600 Series

Application Example: Radar Level Transmitter, Level value in percent (%)

Situation #2

The level of a tank is to be measured using the Radar Level transmitter mounted on a nozzle on the top of the tank. The maximum level in the tank is 46ft (14m). The level value shall be displayed in percentage of the full span (see Figure 6-13).

Figure 6-13. Situation #2 Diagram

100% 46 ft (14m) 0%

Solution #2

Table 6-9 lists the appropriate configuration settings, and Figure 6-14 illustrates the correct function block configuration.

Table 6-9. Analog Input Function Block Configuration for a Level Transmitter where level output is sealed between 0-100%

Figure 6-14. Function Block Diagram for a Level Transmitter where level output is sealed between 0-100%

Application Example: Radar Level Transmitter used to Display Volume

Situation #3

The volume of the tank is to be calculated using the Radar Level Transmitter.

Figure 6-15. Situation #3 Diagram

Solution 3.1

In this solution the volume channel in the analog input block is used to obtain the volume.

Table 6-10. Analog Input Function Block Configuration for a Radar Level Transmitter used in Level Measurement (Situation #3)

Figure 6-16. Analog Input Function Block Diagram for a Typical Level Transmitter

Solution #3.2

In this solution the level channel in the analog input block is used to obtain the volume.

Table 6-11. Analog Input Function Block Configuration for a Radar Level Transmitter used in Level Measurement (Situation #3)

Parameter	Configured Values
L_TYPE	Indirect
XD_SCALE	0 to 14m
OUT_SCALE	0 to 200m ³
Channel	1 Level

Figure 6-17. Function Block Diagram for a Level Transmitter where level output is sealed between 0-100%

CONFIGURATION USING THE SENSOR BUS PORT

When using a 5601 with FOUNDATION Fieldbus the configuration of the transmitter is done via DeltaV or other Fieldbus Host. With the help of Device descriptors these hosts are able to present, read, and write necessary information and data within the transmitter and assist the user to a successful configuration of the transmitter.

In some cases, there could be a need for a more advanced service access to the transmitter. This is done by using the Radar Master and accessing the data from the Sensor Bus Port, which is always readily available. Below are instructions of how to connect this port and how to use it.

Electrical Connection The electrical interface is RS-485 (2-wire) and the language spoken (protocol) is Modbus.

To be able to connect to the Sensor Bus on the Rosemount 5601, you must have a RS-232/485 converter. Below you find two models of such RS-232/485 modems which have been successfully used to communicate with the 5601 on the Sensor Bus. Basically any type of RS-232/485 converter can be used but different Models use different switches/settings etc., and therefore they are not listed here. The recommended type for field use is the K2.

The converter is to be connected on the Sensor Bus Port which is normally used by the Rosemount 2210 Display Unit. Disconnect the communication wires (X2: 6 & 7) to the Display Unit.

Connecting the K2 ADE Modem

Once the Rosemount 2210 Display Unit has been disconnected, connect the K2 ADE modem to terminals 6 and 7 on the 5601 transmitter according to Figure 6-18.

NOTE

The K2 can not be used in Intrinsically Safe area. The part number for the K2 ADE modem is 05600-5004-0001.

The K2-ADE is a small and handy converter which is connected directly to the COM-port. It will take the power from the COM-port of the computer.

NOTE

Some computers can not supply enough power and in such cases you can try the 'intelligent' mode. This means you set a fixed Baud rate on the converter (using the DIP-switches) and it will control the RS-485 dataflow direction automatically (without the need for any control signals (i.e. RTS) from Radar Master Software).

For best communication performance, a 120 ohm resistor must be connected on the K2 1 & 2 terminal.

Figure 6-18. Connection of K2 Modem

Set the K2 converter per Figure 6-19 to be controlled by the RTS signal from the Radar Master software.

Figure 6-19. DIP-switch setting on the K2 converter.

Switching to Sensor Bus Mode

By using the Sensor Bus method in DeltaV or applicable Fieldbus host the user is automatically setting the transmitter in "Out Of Service" mode. Then it sets the transmitter in the Sensor Bus Mode.

Basic connection and configuration description

- 1. Make the electrical connection, as described in Figure 6-18 and Figure 6-19.
- 2. Open Radar Master and change protocol to Modbus and modem type to RS-485.
- 3. Search for a new online device by selecting New Device in the Device menu. The default unit has Modbus address 246.
- 4. Enter the configuration windows as required for the configuration

NOTE

Do not enter any 2210 Display Unit configuration windows.

- 5. Disconnect from the device.
- 6. Use the Online Help in the Radar Master for further instructions of how to configure the transmitter.

Detailed Connection and Configuration description

- 1. Make the electrical connection, as described in Figure 6-18 and Figure 6-19.
- When you start Radar Master you will get a 'RRM Startup' window with some options, press Cancel. Go to: Open View\Communication Preferences\ and set the communication as below:
 - Disable the HART communication before Enabling the Modbus Communication (Only necessary if the same Communication Port is used).
 - Modem: RS-485
 - Baud Rate: 4800
 - Stop bit: 1
 - Handshake: RTS/CTS/DTR/DSR
 - Retries: 10
 - The rest are left as default

Figure 6-20. Setting Modbus communication using the Radar Master

Hodbus	HART
Enable Modbus Communication	Default
Port Settings	
Post	Modem
сом1 -	RS-495 ¥
Advanced	
Baudrate	Handshake
4800 *	RTS/CTS/DTR/DSR +
Stop Bits	Response Timeout
1 *	1000
Parity	Ratias
None	3
lune 7	P-

3. Search for the transmitter by entering the Device\New Device

Figure 6-21. Search for transmitter using the Radar Master

hotocol(s)	Modbus		Settings		Advanced
Select Scan T C Scan A Start Add	ype J Addresses ddress Range less End A 16	4660mms			
Select Device Unit ID	Device Type	Version	Protocol	Addess	Device Tag
Select Device Unit ID	Device Type	Version	Protocol	Addess	Device Tag

- 4. Once the transmitter is found, select it and press OK.
- 5. Enter any Configuration or Service window within Radar Master and perform the configuration and setup as normally done.

NOTE

Do not enter any Rosemount 2210 Display Unit configuration windows since the display unit is disconnected. This will result in a software halt in the transmitter. Should this happen, please cycle the transmitter power and restart the unit. Go back to Step 3 and continue from there.

6. When finished press "Disconnect" by right-clicking on the transmitter in the Device explorer in Rosemount Radar Master.

Reference Manual

00809-0100-4024, Rev BA September 2005

SAFETY MESSAGES Procedures and instructions in this section may require special precautions to ensure the safety of the personnel performing the operations. Information that raises potential safety issues is indicated by a warning symbol (⚠). Please refer to the following safety messages before performing an operation preceded by this symbol.

AWARNING

Explosions could result in death or serious injury:

Verify that the operating environment of the transmitter is consistent with the appropriate hazardous locations certifications.

Before connecting a HART-based communicator in an explosive atmosphere, make sure the instruments in the loop are installed in accordance with intrinsically safe or non-incendive field wiring practices.

Do not remove the transmitter cover in explosive atmospheres when the circuit is alive.

ROSEMOUNT 2210 DISPLAY UNIT

Figure 7-1. Rosemount 2210 Display Unit Menu Tree

September 2005

Operation

The Rosemount 2210 Display unit can be used for configuration as well as for viewing tank data. The four softkeys allow you to navigate through the different menus, and to select various functions for service and configuration. (See Section 2: Mechanical Installation for information on how to connect the 2210 Display Unit.)

If you leave the Display Unit in Service or Setup mode without pushing any button for 10 minutes (set in User Defined), it is automatically switched to View mode, presenting the same measurement variable that was displayed last time View mode was open.

The main menu contains the following options:

Figure 7-2. Main Menu

- The **View** option allows you to view level data and signal strength.
- The Service option allows you to view configuration status, edit holding registers, reset holding registers to factory values, do a software reset or to start a search for the surface echo.
- The **Setup** option allows you to configure a transmitter.
- The **Display Panel** option allows you to set units for measured values, to set language and to change the user password.

Adjusting the LCD contrast

The LCD contrast can be increased by simultaneously pressing the two buttons on the right-hand side. Press the two left-hand buttons to decrease the contrast. It takes approximately 10 seconds to adjust from minimum to maximum display panel contrast.

Entering a Password

Some windows are protected by a password. The password is entered by pressing the three blank softkeys in a certain order (maximum 12 characters). Each figure refers to a particular softkey, as illustrated.

As default the password is blank, i.e. you can open a password protected window merely by pressing the **OK** button. In order to use the password protection you have to set the password as described in Display Setup and below.

Figure 7-3. Password screen

Example: If the password is "231", you start by pressing the second key, then the third key and finally the first softkey. You can change the password at any time by opening the **Display Panel** menu.

Softkeys

The softkeys have different meanings depending on which window that is open. Use the arrow buttons to move the cursor up and down (or sideways in some windows). These buttons are also used for changing figures when you are asked to enter a value.

Figure 7-4. View Menu

Figure 7-5. View Display

Presentation of measured data

When viewing measurement data, you can use the softkeys to move between different views as illustrated below. There are also status indicators showing you that measurements are performed, and whether these measurements are valid or not.

Selecting between different alternatives

When you configure the 5600, the softkeys will take on definitions which allow you to select specific items and to save the current settings.

When the cursor has reached the last item, it jumps back to the first item by pressing the down arrow button.

Figure 7-6. Set antenna type

NOTE

When the word **MARK** appears, it must be used to save the selected value.

Entering numerical values

Use the up arrow button to enter the desired value. Each click increases the digital value one step from zero to nine and back to zero.

The **Next** button is to move the cursor to the next digit. When the cursor reaches the last digit, select **NEXT** to move back to the first digit again.

Figure 7-7. Give Startcode

Viewing Level Data

The View Menu

the View Menu includes options for viewing tank and transmitter related data:

Figure 7-8. View Menu

- Press **Back** to return the main menu.
- Use the arrows to move the cursor up or down.
- Press Next to open the selected submenu.

User Defined

Select the **User Defined** submenu to view measured data according to defined settings. The fist time this submenu is accessed you will be asked to define your preferred settings.

Single Value

Select Single Value to view measured data.

Press Item to choose between the following:

- Level
- Ullage (distance)
- Level Rate
- Signal Strength
- Volume

To switch between the following display modes, select GRPH:

- Numerical measured data is presented as a value
- Bar graph the measured value is presented in a bar graph showing the current value.

Standard View

Select **Standard View** from the **View** menu to view a list of measured variables.

Figure 7-9. Standard View menu

Temperature View

Select **Temperature View** from the **View** menu to view measured temperatures from the connected temperature sensors.

Display Setup

The Display Setup is used to set presentation units, language, and password in the 2210 Display only. If you do not want to change the default settings, skip this step and go to Custom Setup. To configure the display panel, access the Display Setup Window by selecting the Display Panel option from the Main Menu and pressing **Next**.

User Defined View

- 1. Select User Defined and press Next.
- The number of selections above decides if the next choice is to select type or mode. If one item was selected, select type and press Next. If two or more items were selected, select mode and press Next. For the toggling mode also select how long each item will be shown and press Next.
- 3. Select units for the selected items and press Next.
- 4. Set time out in minutes for the display to return to default view and press **Save**.

Language

- 1. Select Language and press Next.
- 2. Move the cursor to the preferred language and press Mark.
- 3. Save your choice by pressing **Save**. The display will return to the view mode.

Units

- 1. Select the Units menu and press Next.
- 2. Select Length, Velocity, Volume, or Temperature and press Next. the measurement unit to be used for presentation of data and click Save.

Password

To change your display panel password select the **Password** option and press the button. This password must be entered in order to be able to change the transmitter configuration. Follow the procedure Entering a Password.

1. Select **Setup** from the Main Menu and choose one of the options to configure the transmitter.

NOTE

The Setup dialog is automatically opened when a transmitter is started for the first time.

Guided Setup

The Guided Setup option contains the basic steps for configuration of the 5600 Radar Level Transmitter.

Custom Setup

Use the Custom Setup option if you for example want to include options for volume calculations and disturbance echo handling.

Installing a Rosemount 5600 Radar Level Transmitter

Guided Setup

The **Guided Setup** includes the basic steps to start the transmitter. This option gives a guided step by step through a sequence of configuration windows. The windows are automatically opened in a predefined order. To configure a new radar transmitter using the Guided Setup option do the following:

- 1. Choose Setup from the Main Menu.
- 2. Enter your password and press the button. The password is defined by clicking the first three softkeys in a given order. An asterisk is shown for each key that is pressed.
- 3. Select "Guided..." from the Setup Menu and press Next.
- Set the Antenna Type. Press Save to move the cursor to the desired antenna, and click Mark to select it (see Figure 7-6 on page 7-5). Std = standard;
 - P = PTFE tank sealing;
 - Q = quartz sealing;
 - HP = factory use only;
 - C = factory use only.

Finish by pressing **Save**. Note that you have to scroll the list using the arrows to find all available antenna types.

NOTE

Dimensions must be entered in meters. Values may be displayed in metric or english units.

- 5. Set the **Tank Type**. Press the arrow button to move the cursor to the desired Tank Type, and click **Mark** to select it.
- 6. Calibrate the **Tank Height** (R). The **Tank Height** (R) is defined as the distance between the upper reference point (specified by the Distance Offset G) and the lower reference point (zero level). Finish by pressing **Save**.
- If the Tank Type is selected so that a Tank Bottom Type is necessary to define, press the arrow button to move the cursor to the desired Tank Bottom Type. Click Mark to select it.
- Choose the Tank Environment option. Select appropriate surface conditions. Mark the options that describes the conditions in your tank by selecting Mark.

NOTE

See Section 4: Configuration for further information on how to set the tank geometry and environment parameters.

Custom Setup

To configure a radar transmitter using the **Custom Setup** option, do the following:

- 1. Choose **Setup** from the Main Menu.
- 2. Enter your password and press OK.
- 3. Select Custom from the Setup Menu and press Next.
- 4. Select the Start Radar option from the Custom Setup menu.
 - a. Choose the **Antenna Type** option from the **Start Radar** menu. Examples of antennas available are Rod, Cone, Process Seal, and Parabolic.
 - b. Select the type of antenna that is mounted on the transmitter and click **Save** to open the Start Radar menu.
 - c. Choose the **Tank Environment** option. Select appropriate surface conditions. Mark the options that describes the conditions in your tank by selecting **Mark**.

NOTE

For best performance choose only if applicable and not more than two options, see page 4-6 for more information about the different settings.

- d. Press Save to store the current setting.
- e. Choose the **Product DC** option. The product dielectric constant defines how well the product will reflect microwaves. See the product data sheet (00813-0100-4024) for the correct value. Mark the appropriate range and press the button. When Unknown is used, the transmitter can not be optimized for the product.
- f. Choose the Start Code option. Confirm your Start Code by selecting Save. The transmitter is delivered with a start code that enables the ordered software options. If you wish to change the set of available options, contact your local representative for a new start code. Check the list of enabled options. Contact your local representative if you would like to add one or more software options. If the list is correct confirm by pressing OK.
- g. Press **Back** to return to the **Custom Setup** menu. The **Advanced** option allows you to make advanced setup of Tank Environment database registers (for trained personnel only).

- 5. Select the Geometry option from the Custom Setup menu.
 - a. Select **Tank Type** and press **Next**. Select Tank Shape option and press **Save**.
 - b. Select **Tank Height** and press **Next**. The **Tank Height** (R) is defined as the distance between the upper reference point and the lower reference point (zero level). Set the **Tank Height** and press **Save**.
 - c. Select **Bottom Type** and press **Next**. Select Tank Bottom option and press **Save**.
 - d. The **Calibration Distance** is by default set to zero. It is used to adjust the transmitter so that measured levels match hand dipped product levels. Normally a minor adjustment is necessary. There may for example be a deviation between the actual tank height and the value stored in the transmitter database. Set the **Calibration Distance** and press **Save**.

NOTE

See Section 4: Configuration for further information on how to set the tank geometry parameters.

- e. Select the **Advanced** menu and press **Next**. Set the **Distance Offset** (G). The Distance Offset (G) is defined as the distance between the upper reference point and the flange (the flange is referred to as the Transmitter's Reference Point). You can use the Distance Offset to specify your own reference point at the top of the tank. Set the Distance Offset to zero if you want the flange as upper reference point. The Distance Offset is defined as positive if you use an upper reference point above the Transmitter's Reference Point. The Distance Offset is used when the measured level by the transmitter should correspond with the level value obtained by hand-dipping.
- f. Set the **Minimum Level Offset** (C). The Minimum Level Offset (C) defines a lower null zone which extends the measurement range beyond the Zero Level Reference Point down to the tank bottom. The Minimum Level Offset is defined as the distance between the zero level (Tank Level Reference Point) and the minimum accepted level, i.e. the tank bottom. Set the Minimum Level Offset to zero if you use the tank bottom as zero level reference point. If the zero level is not defined as the tank bottom and instead is an elevated point as the datum plate, you need to define the Minimum Level Offset. Note that the Minimum Level Offset can not be negative.
- g. Set the **Tank Connection Length** (TCL). The **Tank Connection Length** (TCL) parameter is entered for antenna type User Defined only. For standard antennas the TCL value is set automatically.

- 6. Select the **Analog Out 1** option from the Custom Setup menu (Optional). If the transmitter is equipped with an analog output, the range of the output is automatically calibrated to match the tank calibration (Distance Offset and Tank Height). If you want to change this setting, do the following:
 - a. Enter **Source**. Available options are: level, ullage, level rate, signal strength, and volume (T1-T6 and Average Liquid Temp. optional).
 - b. Enter the analog output values that correspond to **4 mA** and **20 mA**, respectively.
 - c. Select **Alarm mode**: Low Current, High Current, Freeze, BinLow, BinHIgh
 - d. **D/A Trim**. Use this option to calibrate the Digital/Analog Converter to correspond to the nominal values 4 mA and 20 mA.

NOTE

The analog output is set to fixed current mode during the calibration procedure.

To calibrate the DAC do the following:

- a. Choose the D/A Trim option.
- b. Click the **OK** button if you want to continue, (or click **CNCL** to quit without calibrating the D/A converter).
- c. Enter the measured value that corresponds to the 4 mA setting.
- d. Click the **DONE** button.
- e. Enter the measured value that corresponds to the 20 mA setting.
- f. Click the **DONE** button. Now the D/A calibration is finished, and the analog output is no longer in fixed current mode.
- 7. Select the **Analog Out 2** option from the Custom Setup menu (optional). If the transmitter is equipped with an extra analog output, follow the same configuration procedure as for Analog Out 1. Configuration of the extra analog output is identical to configuration of analog output 1. See step 6 above.

8. Select the False Echo option from the Custom Setup menu (optional). In normal operation the transmitter compares detected echoes with a list of registered disturbance echoes, in order to decide which one is the actual product surface. To view a list of echoes that the transmitter has detected select the Tank Echoes option.

Select echoes from this list and add to the list of registered echoes. Only register disturbing echoes which can be identified as caused by an object in the tank. To register a disturbance echo, do the following:

- a. Move the cursor to the echo you want to add to the list.
- b. Click Edit.
- c. Move the cursor to Add to list, and click Mark.
- d. Click **Save** to register the marked echo.
- e. Repeat steps a to d if you wish to register more disturbance echoes. The Set as surface option allows you to define an echo as the product surface. Mark the Add new false option if you want to manually add echoes. This may be a useful option if, for example, there are known disturbances below the product surface which can not be detected by the transmitter at the time of installation.
- f. Click **CNCL** to return to the False Echo menu. To view the current list of registered disturbing echoes select the **Reg. False Echoes**.

To remove a registered disturbance echo, do the following (see "Disturbance Echo Handling" on page 4-11):

- a. Move the cursor to the echo you want to remove.
- b. Click Edit.
- c. Select the **Remove echo** option and click **MARK**.
- d. Click **Save** to remove the selected echo.

Mark the **Add new false** option if you want to manually add a false echo to the list of registered disturbance echoes. Mark the **Clear list** option if you want to remove the whole list of registered disturbance echoes. This option may be useful if you want to create a completely new list.

- 9. Select the Volume option from the Custom Setup menu. The Volume option allows you to setup the 5600 transmitter for volume calculations. You can choose between using either a predefined tank shape like a sphere or a horizontal or vertical cylinder, or entering level and volume values into a strapping table.
 - a. Select **Shape** and press **Edit**. Choose the Tank Geometry to be used for volume calculation and press **Save**.
 - b. Select **Diam** and press **Edit**. Set the tank diameter and press **Save**.
 - c. Select **Zero Level Offset** and press **Edit**. Set the distance from zero level to tank bottom and press **Save**.
 - d. Select *Volume Offset* and press **Edit**. Set the volume offset and press **Save**.
 - e. Select **Volume Control** and press **Edit**. Mark the NegVolDisabled option and press **Save**.
Reference Manual

00809-0100-4024, Rev BA September 2005

Section 8 Maintenance and Troubleshooting

Overview	page 8-1
Safety Messages	page 8-1
HART Maintenance and Troubleshooting	page 8-2
Fieldbus Maintenance and Troubleshooting	page 8-4
Resource Block	page 8-8
Transducer Block	page 8-9
Analog Input (AI) Function Block	page 8-9

OVERVIEW

SAFETY MESSAGES

This sections contains operating, maintenance, and troubleshooting information for the Rosemount 5600 HART and FOUNDATION Fieldbus.

Procedures and instructions in this section may require special precautions to ensure the safety of the personnel performing the operations. Information that raises potential safety issues is indicated by a warning symbol (\triangle). Refer to the following safety messages before performing an operation preceded by this symbol.

Follow the procedures described here to verify that transmitter hardware and process connections are in good working order. Always deal with the most likely checkpoints first.

Warnings A

Explosions can result in death or serious injury.

- Do not remove the transmitter covers in explosive environments when the circuit is live.
- Transmitter covers must be fully engaged to meet explosion proof requirements.
- Before connecting a communicator in an explosive atmosphere, make sure that the instruments in the loop are installed according to intrinsically safe or nonincendive field wiring practices.

Static electricity can damage sensitive components.

Observe safe handling precautions for static-sensitive components.

HART MAINTENANCE AND TROUBLESHOOTING

If you suspect malfunction despite the absence of any diagnostic messages on the HART Communicator display and other configuration tools, follow the procedures described here to verify that transmitter hardware and process connections are in good working order. Always deal with the most likely checkpoints first.

Troubleshooting Table

Table 8-1 provides summarized troubleshooting suggestions for the most common operating problems.

Table 8-1. Rosemount 5600 HART troubleshooting table

SYMPTOM	ACTION
No level reading	Check the power supply.
	Check the cables for serial data communication.
Incorrect level reading	Check the transmitter calibration.
	Check that the transmitter has not locked on an interfering object.
	Check that the mechanical installation is correct.
Serial communication failure	Check the COM port setting in the Radar Master program (See page 8-3)
	Check the serial communication address.
	Check the cable connections and that the correct cables are used.
Display Panel window is blank	Check the power supply
Poor Display Panel contrast	Press the two right-hand buttons to increase the LCD contrast.

Service Using the Rosemount 2210 Display Unit

The Service Menu allows you to view the configuration status, edit holding registers, reset holding registers to factory values, do a software reset or to start a search for the surface echo. Information about antenna type, software versions, operation time, error status and unit code is available. You can also start a search for the surface echo and reset some of the holding registers to factory settings.

The service functions should only be used if you are familiar with the advanced functionality of the Rosemount 5600 Radar Level Transmitter.

Table 8-2.	5600 Advanced	Functionality
------------	---------------	---------------

Advanced Functionality	Purpose
Config Report	Shows information on antenna type, software versions, software and hardware configuration, operation time, error status and unit code.
Echo Search	Starts a search for the surface echo.
Factory Settings	Resets selected holding registers to factory settings.
Software Reset	Use this option to trigger the software start up procedure
Super Test	Enables all software options for one week. Use this option if you want to test options not available in your transmitter.
Overfill Alarm	Use this menu to activate or deactivate the overfill alarm.
Advanced Service	Use this option to view input registers and to view an edit holding registers. The Advance Service window is protected by a special password which is valid for this window only. Contact your local representative for this password if you need to use the Advance Service option.

Field Upgrades

Labeling

Each radar transmitter is labeled individually, so it is imperative that the approval codes on each label match exactly during upgrade. The label on the radar transmitter reflects the replacement model code for reordering an assembled unit. The housing labeling will only reflect the approvals and communication protocol of the housing.

September 2005

Figure 8-1. Example of the Rosemount 5600 transmitter head label and antenna label

Connection via Sensor Bus Port

In addition to the standard communication ports, where HART or FOUNDATION fieldbus are the main protocols used, there is an additional Port available (Sensor Bus Port).

This port is mainly used for upgrading Firmware, or for the use of the Radar Master software in combination with a transmitter equipped with a FOUNDATION fieldbus output. To utilize this port you need a RS485 modem hooked up on terminals 6 and 7 on the Intrinsically Safe side of the transmitter. The software used is the standard Rosemount Radar Master. since terminals 6 and 7 are used by the Rosemount 2210 Display Unit you have to disconnect it first. For more information about this Sensor Bus port, please see the on-line help in the Radar Master software or contact your local Rosemount representative.

NOTE

For Windows 2000 and Windows XP you need to set the Serial Port buffer as instructed below:

- 1. Right click on My Computer and choose Properties
- 2. Choose the tab Hardware
- 3. Click on the button Device Manager
- 4. Navigate to Ports in the list of hardware
- 5. Right click on Serial Port COM 1 and choose Properties
- 6. Choose the tab Port Settings
- 7. Click Advanced
- 8. Drag the slider for Receive Buffer and Transmit Buffer to 1
- 9. Click OK
- 10. Reboot the Computer
- 11. Repeat for COM 2 or other communication port if available.

FIELDBUS	Methods and Manual Operation		
MAINTENANCE AND TROUBLESHOOTING	Each FOUNDATION fieldbus host or configuration tool has different ways of displaying and performing operations. Some hosts will use Device Descriptions (DD) and DD Methods to complete device configuration and will display data consistently across platforms. The DD can be found on www.rosemount.com. There is no requirement that a host or configuration tool support these features.		
	The information in this section will describe how to use methods in a general fashion. In addition, if your host or configuration tool does not support methods this section will cover manually configuring the parameters involved with each method operation. For more detailed information on the use of methods, see your host or configuration tool manual.		
Configure Transmitter	Refer to Section 6: FOUNDATION Fieldbus Configuration for further information regarding the configuration of the Radar Transmitter.		
Service Method	This method is for service purpose only. If your host does not support methods ENV_DEVICE_MODE it needs to be manually configured. The following options are available:		
	 FOUNDATION[™] fieldbus: Set the device in normal fieldbus communication mode. 		
	 Sensor bus: Set the device in sensor bus mode, which means that all communication goes through the external sensor bus instead of the fieldbus. This is used to connect PC configuration tools. 		
	 Restart transmitter: Restarts the device, not the fieldbus card. 		
	 Set to factory default: Sets all configured data to factory settings. 		
Calibration Distance Configuration	See page 4-6 for further information.		
Master Reset Method (Resource Block)	To perform a master reset, run the Master Reset Method. If your system does not support methods, manually configure the Resource Block parameters listed below.		
	1. Set the RESTART = Run, Resource, Defaults, or Processor		
	 Run = nominal state when not restarting (default) 		
	Resource = not used by device		
	 Defaults = sets parameters to FOUNDATION fieldbus default values Processor = does a warm start of the fieldbus card and the transmitter 		
Write Protection	Inputs to the security and write lock functions include the bardware accurity		
(Resource Block)	jumper, the hardware and software write lock bits of the FEATURE_SEL parameter, the WRITE_LOCK parameter, and the DEFINE_WRITE_LOCK parameter.		

The WRITE_LOCK parameter limits access to modify parameters within the block except to clear the WRITE_LOCK parameter. During this time, the block will function normally updating inputs and outputs and executing algorithms. When the WRITE_LOCK condition is cleared, a WRITE_ALM alert is generated with a priority that corresponds to the WRITE_PRI parameter.

The FEATURE_SEL parameter enables the user to select a hardware or software write lock or no write lock capability. To enable the hardware security function, enable the HW_SEL bit in the FEATURE_SEL parameter. When this bit has been enabled the WRITE_LOCK parameter becomes read only and will reflect the state of the hardware jumper. In order to enable the software write lock, the SW_SEL bit must be set in the FEATURE_SEL parameter. Once this bit is set, the WRITE_LOCK parameter may be set to LOCKED or NOT LOCKED. Once the WRITE_LOCK parameter is set to LOCKED by either the software or the hardware lock, all user requested writes as determined by the DEFINE WRITE LOCK parameter shall be rejected.

The DEFINE_WRITE_LOCK parameter allows the user to configure whether the write lock functions (both software and hardware) will control writing to all blocks, or only to the resource and transducer blocks. Internally updated data such as process variables and error logs will not be restricted by the security jumper.

Table 8-3 displays all possible configurations of the WRITE_LOCK parameter.

FEATURE_SEL HW_SEL bit	FEATURE_SEL SW_SEL bit	SECURITY JUMPER	WRITE_LOCK	WRITE_LOCK Read/Write
0 (off)	0 (off)	NA	1 (unlocked)	Read only
0 (off)	1 (on)	NA	1 (unlocked)	Read/Write
0 (off)	1 (on)	NA	2 (locked)	Read/Write
1 (on)	0 (off) ⁽¹⁾	0 (unlocked)	1 (unlocked)	Read only
1 (on)	0 (off)	1 (locked)	2 (locked)	Read only

(1) The hardware and software write lock select bits are mutually exclusive and the hardware select has the highest priority. When the HW_SEL bit if set to 1 (on), the SW_SEL bit is automatically set to 0 (off) and is read only.

Figure 8-2. 5600 Foundation Fieldbus Electronic Board

Table 8-3. WRITE LOCK

parameter

5600 13 AA.EPS

Block Instantiation The Rosemo a device sup blocks and b blocks that ca the device ar does not app and Register system or co functionality.	The Rosemount 5600 supports the use of Function Block Instantiation. When a device supports block instantiation, the user can define the number of blocks and block types to match specific application needs. The number of blocks that can be instantiated is only limited by the amount of memory within the device and the block types that are supported by the device. Instantiation does not apply to standard device blocks like the Resource, Level Transducer, and Register Transducer Block. Block instantiation is done by the host control system or configuration tool, but not all hosts are required to implement this functionality. Please refer to your specific host or configuration tool manual for more information.
	Rosemount devices are pre-instantiated with function blocks at the factory, the default configuration for the Rosemount 5600 is listed below.
	6 Analog Input Blocks (tag names AI 1300 through AI 1800)
Troubleshooting Table	Table 8-4 provides summarized maintenance and troubleshooting

suggestions for the most common operating problems. This section contains Rosemount 5600 fieldbus troubleshooting information only.

Table 8-4. Rosemount 5600 troubleshooting table

Symptom	Corrective Actions
FOUNDATION fieldbus Card to Transmitter Communication Fault	Verify Device Mode setting, should be Foundation fieldbus (Parameter: ENV_DEVICE_MODE) Restart method from Resource Block Reboot transmitter (Cycle Power)
Level Measurement Failure	Check Power Supply Check the transmitter configuration (Transducer Block) Check that the mechanical installation is correct
Temperature Measurement Failure	Check temperature electrical installation Check configuration (Transducer Block) Restart the transmitter
Volume Measurement Failure	Restart transmitter Check transmitter configuration using PC Based configuration Tool, Radar Master
No surface echo	Check signal strength Restart transmitter
Tank Signal Clip Warning	Restart transmitter
Empty Tank/ Full Tank	Information of tank status
Configuration Reg Password Enabled	Information, Ready Write Data
DB Error/ Microwave Unit Error/ Configuration Error/ Other Error	Restart transmitter Call Rosemount Service Center Download Application Software Set database to default load Database default
SW Error/ Display Error/ Analog Out Error	Restart transmitter Call Rosemount Service Center

Field Upgrades

Labeling

▲ Each radar transmitter is labeled individually, so it is imperative that the approval codes on each label match exactly during upgrade. The label on the radar transmitter reflects the replacement model code for reordering an assembled unit. The housing labeling will only reflect the approvals and communication protocol of the housing.

Figure 8-3. Example of the Rosemount 5600 label

RESOURCE BLOCK	This section describes error conditions found in the Resource block. Read Table 8-5 through Table 8-7 to determine the appropriate corrective action.	
	Block Errors	
	Table 8-5 lists conditions reported in the BLOCK_ERR parameter.	
Table 8-5. Resource Block		
BLOCK_ERR messages	Condition Name and Description	
	Other	
	Simulate Active: This indicates that the simulation switch is in place. This is not an indication that the I/O blocks are using simulated data	
	Device Fault State Set	
	Device Needs Maintenance Soon	
	Memory Failure: A memory failure has occurred in FLASH, RAM, or EEPROM memory	
	Lost Static Data: Static data that is stored in non-volatile memory has been lost	
	Lost NV Data: Non-volatile data that is stored in non-volatile memory has been lost	
	Device Needs Maintenance Now	
	Out of Service: The actual mode is out of service	

Table 8-6. Resource Block SUMMARY_STATUS messages

_			
Con	76 H H	on N	am

Uninitilized Repairable

Table 8-7. Resource Block DETAILED_STATUS with recommended action messages

No repair needed Call Service Center

Condition Name	Recommended Action
LOI Transducer block error	 Restart processor Check display connection Call service center
Sensor Transducer block error	 Restart processor Check Rosemount 5600 cable Call service center
Mfg. Block integrity error	 Restart processor Call service center
Non-Volatile memory integrity error	1. Restart processor 2.Call service center
ROM integrity error	1. Restart processor 2. Call service center

TRANSDUCER BLOCK This section describes error conditions found in the Sensor Transducer Block. Table 8-8. Transducer Block Condition Name and Description Other Out of Service: The actual mode is out of service Table 8-9. Transducer Block Condition Name and Description Condition Name and Description Other Out of Service: The actual mode is out of service

Electronics Failure: An electrical component failed

checksum failure, a data verify after write failure, etc.

I/O Failure: An I/O failure occurred

overflow, data reasonableness failure, etc.

ANALOG INPUT (AI) FUNCTION BLOCK

Table 8-10. AI BLOCK_ERR Conditions

Condition Number	Condition Name and Description
0	Other
1	Block Configuration Error: the selected channel carries a measurement that is incompatible with the engineering units selected in XD_SCALE, the L_TYPE parameter is not configured, or CHANNEL = zero
3	Simulate Active: Simulation is enabled and the block is using a simulated value in its execution
7	Input Failure/Process Variable has Bad Status: The hardware is bad, or a bad status is being simulated
14	Power Up
15	Out of Service: The actual mode is out of service

Data Integrity Error: Data stored in the device is no longer valid due to a non-volatile memory

Algorithm Error: The algorithm used in the transducer block produced an error due to

This section describes error conditions that are supported by the AI Block.

Read Table 8-11 to determine the appropriate corrective action.

Table 8-11. Troubleshooting the Al block

Symptom	Possible Causes	Recommended Actions
Bad or no level readings (Read the AI "BLOCK_ERR" parameter)	BLOCK_ERR reads OUT OF SERVICE (OOS) BLOCK_ERR reads CONFIGURATION ERROR BLOCK_ERR reads POWERUP BLOCK_ERR reads BAD INPUT No BLOCK_ERR but readings are not correct. If using Indirect mode_scaling could be wrong	 Al Block target mode target mode set to OOS. Resource Block OUT OF SERVICE. Check CHANEL parameter (see "CHANNEL" on page 6-10) Check L_TYPE parameter (see "L_TYPE" on page 6-11) Check XD_SCALE engineering units. (see "XD_SCALE and OUT_SCALE" on page 6-11 Download Schedule into block. Refer to host for downloading procedure. Sensor Transducer Block Out Of Service (OOS) Resource Block Out of Service (OOS) Check XD_SCALE parameter. Check OUT_SCALE parameter. Scheck OUT_SCALE and OUT_SCALE parameter.
	, , , , , , , , , , , , , , , , , , ,	
OUT parameter status reads UNCERTAIN and substatus reads EngUnitRangViolation	Out_ScaleEU_0 and EU_100 settings are incorrect.	See "XD_SCALE and OUT_SCALE" on page 6-11.
Mode will not leave OOS	Target mode not set Configuration error	Set target mode to something other than OOS. BLOCK_ERR will show the configuration error bit set. The following are parameters that must be set before the block is allowed out of OOS: CHANNEL must be set to a valid value and cannot be left at initial value of 0. XD_SCALE.UNITS_INDX must match the units in the transducer block channel value. L_TYPE must be set to Direct, Indirect, or Indirect Square Root and cannot be left at initial value of 0.
	Resource block	The actual mode of the Resource block is OOS. See Resource Block Diagnostics for corrective action.
	Schedule	Block is not scheduled and therefore cannot execute to go to Target Mode. Schedule the block to execute.
Process and/or block alarms will not work	Features Notification Status Options	FEATURES_SEL does not have Alerts enabled. Enable the Alerts bit. LIM_NOTIFY is not high enough. Set equal to MAX_NOTIFY. STATUS_OPTS has Propagate Fault Forward bit set. This
		should be cleared to cause an alarm to occur.
Value of output does not make sense	Linearization Type Scaling	L_TYPE must be set to Direct, Indirect, or Indirect Square Root and cannot be left at initial value of 0. Scaling parameters are set incorrectly: XD_SCALE.EU0 and EU100 should match that of the transducer block channel value. OUT_SCALE.EU0 and EU100 are not set properly.
Cannot set HI_LIMIT, HI_HI_LIMIT, LO_LIMIT, or LO_LO_LIMIT Values	Scaling	Limit values are outside the OUT_SCALE.EU0 and OUT_SCALE.EU100 values. Change OUT_SCALE or set values within range.

Reference Manual

00809-0100-4024, Rev BA September 2005

Rosemount 5600 Series

Reference Data Appendix A Dimensional Drawings page A-8 Ordering Informationpage A-13 **SPECIFICATIONS** General **Product Designation** 5600 Series Radar Level Transmitter **Operating Principle** 10GHz FMCW radar **Beam Angle** See Figure 2-12 and Table 2-3 on page 2-9 **Microwave Output Power** Max 1.0 mW **Internal Calibration** Internal digital reference for automatic compensation of radar sweep Signal Processing Powerful and advanced digital signal processing using FFT and advanced echo handling software **Measuring Performance** Instrument Accuracy (Under reference conditions) ±0.2 in (±5 mm) Resolution 0.04 in (1 mm) **Temperature Stability** ± 500 ppm of measured distance within the ambient temperature range\ Repeatability ±0.04 in (±1 mm) Measuring Range 0-164 ft (0-50 m) **Update Time**

100 ms

Processors

32-bit Floating DSP

Display/Configuration

PC/remote Configuration

Rosemount Radar Master, Powerful and Interactive Windows based configuration tool.

Recommended PC hardware specification: \geq 1 GHz processor,

 \geq 128 MbRam, Operating system of Win 2000, Win XP, or Win NT.

To communicate with the device using Radar Master either a HART or Modbus Modem (RS485 Sensor Bus Port) is required for the PC.

For fieldbus devices Radar Master can only be connected to the Sensor Bus Port (see listed Modems on page A-19).

See "PC Configuration Software Radar Master" on page 5-2 for additional information.

HART Device

Emerson Process Management 375 Field Communicator Emerson Process Management AMS software

See "Hand-Held Communicator" on page 5-7 for additional information.

Display (factory mounted on transmitter)

Protection class IP67 With weather/dirt protection cover; graphical LCD display 128 by 64 pixels with 4 control soft-keys and 7 text lines with 16 characters/line for display and configuration.

Display (remote mounted)

Same as above, mounted in separate enclosure, protection class IP67; max cable length, display - radar transmitter: 330 ft. (100 m); cable type: 4 wire shielded instrument cable, min. 0.5 mm², (AWG 20).

Display with Temperature Inputs (remote mounted)

Same as above, mounted in separate enclosure, protection class IP67; max cable length, display - radar transmitter: 330 ft (100 m); cable type: 4 wire shielded instrument cable, min. 0.5 mm², (AWG 20); temperature measurement 1-3 spot elements PT100 or CU100, or 6 spot elements with common return.

September 2005

Analog Output

Characteristics

Electric

Power Supply

Ultra wide power supply 24-240 V AC or DC 0-60 Hz

NOTE

¹¹Minimum power required at the transmitter power terminals is 20 V.

Power Consumption

Maximum 10 W, Nominal 5 W

Outputs

Primary Output:

Alternative 1: HART + 4-20 mA current loop (non-IS or IS option) Alternative 2: FOUNDATION fieldbus (non-IS or IS option)

Secondary Outputs:

Analog 4-20 mA current loop, active or passive (non-IS or IS option)

Output Cabling

Twisted and shielded pair; min. 0.5 mm² (AWG 20)

Cable Entries

 $3 \times 1/2$ inch NPT; for cable glands or conduit entries Optional: 1/2 inch NPT Cable Gland Kit Optional: 1/2 inch NPT/ M20 Adapters (Set of 3)

Remote 2210 Display Unit⁽¹⁾

 $2 \times M20$ entries $1 \times M25$ entry

Туре

Analog 4-20 mA Current Loop, active (with power supplied by the 5600) or passive (for external loop-supplied power)

Galvanic Isolation

> 1500 V RMS or DC

Analog Output Electrical Characteristics

See "Product Certifications" on page B-1

Range

4-20 mA

Alarm Level

Standard: Low=3.8 mA, High=22 mA or freeze, NAMUR NE43: High=22.50 mA, Rosemount: Low=3.75 mA

(1) US and Canada markets are supplied with $^{1}/_{2}$ -in. and $^{3}/_{4}$ -in. adapters.

Rosemount 5600 Series

Fieldbus Output

Characteristics

Accuracy

± 300μA at 4 mA ± 600μA at 20 mA

Resolution

0.5µA (0.003%)

Linearity ±0.01%

Temperature Drift ± 28 ppm/°F (±50 ppm/°C)

Output Impedance

>10 MΩ

Voltage Compliance

7-30 V (passive output)

External Loop Resistance

<700 Ω (passive output with 24 V external supply) <300 Ω (active output)

Туре

Function blocks available in the device are:

- 1 Level Transducer Block
- 1 Register Transducer Block
- 6 Analog Input Blocks

Fieldbus Output Electrical Characteristics

Fieldbus Voltage limits: 9 to 32 V Current Draw: 12.5 mA For I.S. Applications: $U_i < 30 V$ $I_i < 300 mA$ $P_i < 1.3 W$ $C_i = 0 \mu F$ $L_i = 0 mH$

Lift-off Minimum Voltage

9.0 V

Class Link Master (LAS)

Number of Available VCRs 20

VCR Statistics Yes

Execution Time

60 ms for Al-block

Instantiation

Yes (all activated)

Available Menus and Methods

Transducer Block Configure Gauge, Restart Device, Set to Factory Defaults, Sensor Bus

Resource Function Block Master Reset

Conforming Foundation[™] fieldbus ITK 4.6

Advanced Diagnostics

Failures Level, Temperature and Volume measurement failure

Warnings

Empty tank, Full tank, Database, Hardware, Software and Configuration warnings

Errors Database, Hardware, Software and Configuration warnings

2210 Display Unit Output Characteristics

With Temperature Output See "Product Certifications" on page B-1

Without Temperature Output

See "Product Certifications" on page B-1

Temperature Measurement

1-3 spot elements, PT100 or CU100, or 6 spot elements with common return. Input accuracy $\pm 0.9^{\circ}F$ ($\pm 0.5^{\circ}C$)

Temperature Measurement Output

Average temperature or individual spots (1)

(1) Individual spots not available in Foundation fieldbus devices

Mechanical

Housing/Enclosure

Permanent moulded cast aluminium, chromed and powder painted

Flanges

ANSI, DIN standard, Material: Stainless steel 316L and Stainless Steel EN 1.4404 Optional: Hot-galvanized carbon steel

Weight, Excluding, Flange

18 lbs (8 kg)

Height Above Flange

15 in (400 mm)

Antenna Dimensions

Cone: See Figure A-2 on page A-8 Rod: See Figure A-1 on page A-8 Process Seal: See Figure A-4 and Table A-2 on page A-10 Extended Cone: See Figure A-5 on page A-11 Cone with Integrated Flushing Connection: See Figure A-6 on page A-11 Parabolic: See Figure A-7 on page A-12

TABLE 1. Antenna material and o-ring selection • Applicable - Not applicable

	Rod Antenna	Cone Antenna	Process Seal Antenna	Extended Cone Antenna	Cone with Integrated Flushing Connection	Parabolic Antenna
Material:						
Stainless Steel 316L	● ⁽¹⁾	•	-	•	•	•
Hastelloy [®] C22	-	•	-	-	-	-
Titanium Gr1/Gr2	-	•	-	-	-	-
Tantalum	-	•	-	-	-	-
Monel [®] 400	-	•	-	-	-	-
PTFE	● ⁽¹⁾	-	•	-	-	-
Tank Seal:						
PTFE	-	•	-	•	•	•
Quartz	-	•	-	•	•	-
O-Rings:						
Viton	•	•	-	•	•	•
Kalrez	•	•	-	•	•	-
EPDM	•	•	-	•	•	-
Buna-N	٠	٠	-	٠	•	-

(1) The wetted parts of the Rod Antenna consists of both 316L SST (inactive part) and PTFE.

00809-0100-4024, Rev BA September 2005

Environment

Ambient Temperature

-40 to 158°F (-40 to 70°C) LCD Readable between: -4 to 158°F (-20 to 70°C)

Process Temperature Range (1)

-40 up to 752°F (-40 up to 400°C), depending on antenna style

Flange Temperature Range (1)

TABLE 2. Flange Temperature Range depending on O-ring selection

O-ring Material	Minimum Temperature °F (°C) in air	Maximum Temperature F (°C) in air
Viton	5 (-15)	392 (200)
Ethylene Propylene (EPDM)	-40 (-40)	266 (130)
Kalrez 6375	-4 (-20)	527 (275)
Buna-N	-31 (-35)	230 (110)

Pressure Range ⁽¹⁾

Full vacuum up to +798 psig (+55 bar), depending on antenna style

Emission Approvals

FCC: K8CPRO, K8CPROX R&TTE: E813268O-CC

Humidity IEC 60068-2-3

Climatic Class/Corrosion Class IEC 68-2-1, IEC 60068-2-52 test KB severity 2

Ingress Protection

IP66, IP 67 and NEMA 4

Vibration IEC 721-3-4 class 4M4

UV Protection ISO 4892-2

Electromagnetic Compatibility EN61326-1: 1997 incl A1:1998 and A2:2001, Immunity 50081-2, Emission 50081-1

Lightning Protection EN61326, EN61000-4-5, IEC801-5, level 2 kV

Power Supply Fluctuation IEC 92 Part 504 sec. 3.5

(1) See Figure A-1, Figure A-2, Figure A-4, Figure A-5, Figure A-6, and Figure A-7 for specification of each antenna.

DIMENSIONAL DRAWINGS

Figure A-1. Rod Dimensions

Note: Pressure rating may be lower depending on flange selection. Minimum / maximum flange temperature rating depends on O-ring selection (See Table A-1 and Figure A-3 on page A-9).

Note: Pressure rating may be lower depending on flange selection.

Minimum / maximum flange temperature rating depends on O-ring selection (See Table A-1 and Figure A-3 on page A-9).

Table A-1. Flange Temperature Range depending on O-ring selection

O-ring Material	Minimum Temperature °F (°C) in air	Maximum Temperature F (°C) in air
Viton	5 (-15)	392 (200)
Ethylene Propylene (EPDM)	-40 (-40)	266 (130)
Kalrez 6375	-4 (-20)	527 (275)
Buna-N	-31 (-35)	230 (110)

Figure A-3. Temperature Rating Considerations

Flange temperature depends on mounting conditions, such as nozzle position, distance to max product level, nozzle height, presence of insulation, etc.

Rosemount 5600 Series

Figure A-4. Process Seal Dimensions

Table A-2. Dimensions for Stainless Steel Flange and Galvanized Carbon Steel. Dimensions are in inches (millimeters)

Flange	Di	D	Dh	Ds	F
ANSI 4 inch Class 150	3.78 (96)	9.02 (229)	7.52 (191)	0.87 (22)	0.87 (22)
ANSI 6 inch Class 150	4.94 (125.5)	10.98 (279)	9.49 (241)	0.87 (22)	0.87 (22)
DN100 PN16	3.78 (96)	8.66 (220)	7.09 (180)	0.71 (18)	0.87 (22)
DN150 PN16	4.94 (125.5)	11.22 (285)	9.45 (240)	0.87 (22)	0.87 (22)

Note

Figure A-5. Extended Cone Dimensions for Stainless Steel Flange

Note: Pressure rating may be lower depending on flange selection. Minimum / maximum flange temperature rating depends on O-ring selection (See Table A-1 and Figure A-3 on page A-9).

Figure A-6. Cone with Integrated Flushing Connection Dimensions for Stainless Steel Flange

Note: Pressure rating may be lower depending on flange selection. Minimum / maximum flange temperature rating depends on O-ring selection (See Table A-1 and Figure A-3 on page A-9).

Rosemount 5600 Series

Figure A-7. Parabolic Dimensions for Stainless Steel Flange

Process Temperature °F (°C)

ORDERING **INFORMATION**

Table A-3. Rosemount 5600 Radar Transmitter Selection

Model	Product Description
5601	Radar Level Transmitter for Process Applications
Code	Frequency Band
U	US Market Only (10 GHz)
S	Switzerland Market Only (10 GHz)
A	All Other Markets (10 GHz)
Code	Product Certification
NA	None
E1	ATEX Flameproof
E5	FM Explosionproof
E6	CSA Explosionproof
Code	Power Supply
Р	24-240 V DC/AC 0-60 Hz
Code	Primary Output
5A	4-20 mA with HART communication, Passive Output
5B	4-20 mA with HART communication, Passive Output, Intrinsically Safe Circuit ⁽¹⁾
5C	4-20 mA with HART communication, Active Output
5D	4-20 mA with HART communication, Active Output, Intrinsically Safe Circuit ⁽¹⁾
7A	Foundation Fieldbus
7B	Foundation Fieldbus, Intrinsically Safe Circuit ⁽¹⁾
Code	Secondary Output
0	None
1	4-20 mA, Passive Output ⁽²⁾
2	4-20 mA, Passive Output, Intrinsically Safe Circuit ⁽¹⁾
3	4-20 mA, Active Output ⁽²⁾
4	4-20 mA, Active Output, Intrinsically Safe Circuit ⁽¹⁾
Code	Display Unit
N	None
Р	LOI, Factory mounted on transmitter
R	LOI, Remote mounted
Т	LOI, Remote mounted with temp inputs (1-6 spot elements with common returns)
Code	Volume Calculation
E	Basic Volume Equations (Standard)
V	Strapping Table, up to 100 points
Typical Model	Number: 5601 S E1 P 5A 0 P E Antenna Selection ⁽³⁾

Intrinsically safe circuit only applicable if product certificate codes E1, E5, or E6 is selected.
 Not allowed in combination with Display Unit codes P, R, or T.
 Select the antenna type and options using Table A-4, Table A-5, Table A-6, Table A-8, and Table A-9.

Table A-4. Rod Antenna

Code	Antenna Type	Antenna Size	Antenna Material	Note
	Rod			
11S		1.5 in. threaded version	SST 316L and PTFE	Inactive Length 4 inch (100 mm)
12S		2 in. (DN50) nozzles	SST 316L and PTFE	Inactive Length 4 inch (100 mm)
13S		3 in. (DN80) nozzles	SST 316L and PTFE	Inactive Length 4 inch (100 mm)
14S		4 in. (DN100) nozzles	SST 316L and PTFE	Inactive Length 4 inch (100 mm)
11L		1.5 in. threaded version	SST 316L and PTFE	Inactive Length 10 inch (250 mm)
12L		2 in. (DN50) nozzles	SST 316L and PTFE	Inactive Length 10 inch (250 mm)
13L		3 in. (DN80) nozzles	SST 316L and PTFE	Inactive Length 10 inch (250 mm)
14L		4 in. (DN100) nozzles	SST 316L and PTFE	Inactive Length 10 inch (250 mm)
1XX		Customer specific rod or material		Consult Factory
Code		Tank Seal		
Ν		Not Applicable		
Code		O-ring Material		
V		Viton		
К		Kalrez 6375		
E		EPDM		
В		Buna-N		
Code		Process Connection		
NR		Antenna with Plate Design		
		NOTE: Customer supplied flange or se	ee Table A-13 on page A-19 for	flange options
XX		Special Process Connection		Consult Factory
		Threaded Version		
TN		Threaded 1.5 in. NPT		
TB		Threaded 1.5 in. G		
Code		Options		
Q8		Material Traceability Certification per El	N 10204 3.1.B	
Typical Model Number: Selected code from Table A-3 on page A-13 11S N F TN				

Table A-5. Cone Antenna

Code	Antenna Type	Antenna Size	Antenna Material	Note
	Cone			
23S		3 in. (DN80) nozzles	SST 316L	Pipe Installation Only
24S		4 in. (DN100) nozzles	SST 316L	Free propagation or 4" pipe
26S		6 in. (DN150) nozzles	SST 316L	Free propagation or 6" pipe
28S		8 in. (DN200) nozzles	SST 316L	Free propagation only
23H		3 in. (DN80) nozzles	Hastelloy C22	Longer Lead-time, Consult Factory
24H		4 in. (DN100) nozzles	Hastelloy C22	Longer Lead-time, Consult Factory
26H		6 in. (DN150) nozzles	Hastelloy C22	Longer Lead-time, Consult Factory
28H		8 in. (DN200) nozzles	Hastelloy C22	Longer Lead-time, Consult Factory
23T		3 in. (DN80) nozzles	Titanium Gr 1/2	Longer Lead-time, Consult Factory
24T		4 in. (DN100) nozzles	Titanium Gr 1/2	Longer Lead-time, Consult Factory
26T		6 in. (DN150) nozzles	Titanium Gr 1/2	Longer Lead-time, Consult Factory
28T		8 in. (DN200) nozzles	Titanium Gr 1/2	Longer Lead-time, Consult Factory
23M		3 in. (DN80) nozzles	Monel 400	Longer Lead-time, Consult Factory
24M		4 in. (DN100) nozzles	Monel 400	Longer Lead-time, Consult Factory
26M		6 in. (DN150) nozzles	Monel 400	Longer Lead-time, Consult Factory
28M		8 in. (DN200) nozzles	Monel 400	Longer Lead-time, Consult Factory
23Z		3 in. (DN80) nozzles	Tantalum	Longer Lead-time, Consult Factory
24Z		4 in. (DN100) nozzles	Tantalum	Longer Lead-time, Consult Factory
26Z		6 in. (DN150) nozzles	Tantalum	Longer Lead-time, Consult Factory
28Z		8 in. (DN200) nozzles	Tantalum	Longer Lead-time, Consult Factory
2XX		Customer specific cone or material		Consult Factory
Code		Tank Seal		
Р		PTFE		
Q		Quartz		
Code		O-ring Material		
V		Viton		
К		Kalrez 6375		
E		EPDM		
В		Buna-N		
Code		Process Connection		
NR		Antenna with Plate Design		
		NOTE: Customer supplied flange or	see Table A-13 on page A-19 for	flange options
XX		Special Process Connection		Consult Factory
Code		Options		
Q8		Material Traceability Certification per l	EN 10204 3.1.B	
Typical Model	Number: Select	ed code from Table A-3 on page A-1	3 24S P V NR	

Table A-6. Process Seal Antenna

Code	Antenna Type	Antenna Size	Antenna Material	Note
	Process Seal			
34S		4 in. (DN100) nozzles	PTFE	
36S		6 in. (DN150) nozzles	PTFE	
Code		Tank Seal		
Р		PTFE		
Code		O-ring Material		
N		Not Applicable		
Code		Process Connection		
NF		None, Customer to supply flange per dimension	ons on Figure A-4	
XX		Special Process Connection		Consult Factory
		Stainless Steel Flange		
CA		4 in. ANSI Class 150		
DA		6 in. ANSI Class 150		
JA		DN100 PN16		
KA		DN150 PN16		
		Galvanized Carbon Steel Flange		
CC		4 in. ANSI Class 150		Longer Lead-Time, Consult Factory
DC		6 in. ANSI Class 150		Longer Lead-Time, Consult Factory
JC		DN100 PN16		Longer Lead-Time, Consult Factory
KC		DN150 PN16		Longer Lead-Time, Consult Factory
Code		Options		
Q8		Material Traceability Certification per EN 1020	4 3.1.B	
Typical Model	Number: Select	ed code from Table A-3 on page A-13 34S P	N JA	

Table A-7. Parabolic Antenna

Code	Antenna Type	Antenna Size	Antenna Material	Note
	Parabolic			
45S		ø18 in. (440mm)	316 SST with Integrated Inclination	Clamped version (low pressure)
46S		ø18 in. (440mm)	316 SST with Integrated Inclination	Welded version (high pressure)
4XX		Customer Specific	Customer Specific	Consult Factory
Code		Tank Seal		
Р		PTFE		
Code		O-ring Material		
V		Viton		
Code		Process Connections		
NF		None, Flange Ready		
XX		Special Process Connection		Consult Factory
Code		Options		
Q8		Material Traceability Certificatio	on per EN 10204 3.1.B	
		Protective Cover		
PB		PTFE Protective Cover (PTFE B	Bag)	
Typical Model	Number: Select	ed code from Table A-3 on pag	ge A-13 45S P V NR	

Table A-8. Extended Cone Antenna

Code	Antenna Type	Antenna Size	Antenna Material	Note		
	Extended					
73S		3 in. (DN80) nozzles	SST 316L	Standard length 20 inch (500 mm)		
74S		4 in. (DN100) nozzles	SST 316L	Standard length 20 inch (500 mm)		
76S		6 in. (DN150) nozzles	SST 316L	Standard length 20 inch (500 mm)		
7XX		Customer specific extended cone or materi	al	Consult Factory		
Code		Tank Seal				
Р		PTFE				
Q		Quartz				
Code		O-ring Material				
V		Viton				
К		Kalrez 6375				
E		EPDM				
В		Buna-N				
Code		Process Connections				
NR		Antenna with Plate Design				
		NOTE: Customer supplied flange or see T	able A-13 on page A-	19 for flange options		
XX		Special Process Connection		Consult Factory		
Code		Options				
Q8		Material Traceability Certification per EN 10)204 3.1.B			
Typical Model Number: Selected code from Table A-3 on page A-13 76S P V NR						

Table A-9. Cone Antenna with Integrated Flushing Connection

Code	Antenna Type	Antenna Size	Antenna Material	Note
	Cone with Integrated Flushing Connection			
94S		4 in. (DN100) nozzles	SST 316L	Consult Factory
96S		6 in. (DN150) nozzles	SST 316L	Consult Factory
98S		8 in. (DN200) nozzles	SST 316L	Consult Factory
Code		Tank Seal		
Р		PTFE		
Q		Quartz		
Code		O-ring Material		
V		Viton		
К		Kalrez 6375		
E		EPDM		
В		Buna-N		
Code		Process Connection		
XX		Special Process Connection		Consult Factory
		Stainless Steel Flange Welded to A	ntenna	
CL		4 in. ANSI Class 150		Max 101 psig at 392°F (7 bar at 200°C)
DL		6 in. ANSI Class 150		Max 145 psig at 392°F (10 bar at 200°C)
FL		8 in. ANSI Class 150		Max 145 psig at 392°F (10 bar at 200°C)
JL		DN100 PN16		Max 72 psig at 392°F (5 bar at 200°C)
KL		DN150 PN16		Max 87 psig at 392°F (6 bar at 200°C)
LL		DN200 PN16		Max 87 psig at 392°F (6 bar at 200°C)
Code		Options		
Q8		Material Traceability Certification per	EN 10204 3.1.B	
		C T 1 1 A 0 A 10 0 10 D	16.161	

Typical Model Number: Selected code from Table A-3 on page A-13 94S P K KL

Table A-10	Transmitter Opt	tions (multiple	selections	allowed)
	manamiller Op		5 36166110113	anoweu)

Code	Options
	Material Trraceability Certification
Q8	Material Traceability Certification per EN 10204 3.1B
	Calibration Data Certification
Q4	Calibration Data Certificate
	Software Configuration
C1	Custom Software Configuration (CDS required with order)
	Alarm Limits
C4	NAMUR Alarm Level, High Alarm
C8	Low Alarm (Standard Rosemount Alarm)
	Conduit Adapters
G1	¹ /2 inch NPT Cable Gland Kit
G2	¹ /2 inch NPT/ M20 Adapters (Set of 3)
	Conduit Electrical Connector
GE	M12, 4-pin, Male Connector (eurofast)
GM	A size Mini, 4-pin, Male Connector (minifast)
	Special Procedures
P1	Hydrostatic Testing
	Protective Cover
PB ⁽¹⁾	Protective Cover (PTFE Bag)

(1) Parabolic antenna only.

Table A-11. Typical Model Code Examples

5601 A E1 P 5A 0 P E 24S P V NR

ATEX approval, passive HART primary output and display mounted on transmitter. Basic Volume calculation. Antenna is a 4 inch Cone, SST with PTFE Seal and Viton O-rings. No options.

5601 U E5 P 7A 2 T V 94S P K CL C1

FM approval, FOUNDATION[™] fieldbus output and remote mounted display with temp inputs and a secondary 4-20mA passive IS output. Volume table with up to 100 points. 4 inch Cone Antenna with integrated cleaning, PTFE seal and kalrez o-rings for high temperature and pressure. Flange is ANSI 4 inch Class 150 stainless steel. Custom configuration selected.

Accessories

Table A-12. Accessories Part Numbers

Part Number	Description	Note
Modems		
03300-7004-0001	HART Modem and cables	Viator by MACTek
03300-7004-0002	HART USB Modem and cables	Viator by MACTek
05600-5004-0001	K2 RS485 Modbus Modem	For Sensor Bus Port connection
Antenna Accessories		
05600-5001-0001	PTFE Protective Cover (PTFE Bag)	For Parabolic Antenna only
03000-3001-0001		T OF F ATABOLIC ATLETITA OTILY

Rod and Cone Antenna Flanges

Table A-13. Non-welded Flange Part Numbers

Stainless Steel Flanges			
Part Number	Flange Size	Dimensions	Material
05600-1811-0211	ANSI 2 inch Class 150	Acc. To ANSI B16.5	SST 316L ⁽¹⁾
05600-1811-0231	ANSI 2 inch Class 300	Acc. To ANSI B16.5	SST 316L ⁽¹⁾
05600-1811-0311	ANSI 3 inch Class 150	Acc. To ANSI B16.5	SST 316L
05600-1811-0331	ANSI 3 inch Class 300	Acc. To ANSI B16.5	SST 316L
05600-1811-0411	ANSI 4inch Class 150	Acc. To ANSI B16.5	SST 316L
05600-1811-0431	ANSI 4 inch Class 300	Acc. To ANSI B16.5	SST 316L
05600-1811-0611	ANSI 6 inch Class 150	Acc. To ANSI B16.5	SST 316L
05600-1811-0811	ANSI 8 inch Class 150	Acc. To ANSI B16.5	SST 316L
05600-1810-0231	DN50 PN40	Acc. To EN 1092-1	EN 1.4404 ⁽²⁾
05600-1810-0311	DN80 PN16	Acc. To EN 1092-1	EN 1.4404 ⁽²⁾
05600-1810-0331	DN80 PN40	Acc. To EN 1092-1	EN 1.4404 ⁽²⁾
05600-1810-0411	DN100 PN16	Acc. To EN 1092-1	EN 1.4404 ⁽²⁾
05600-1810-0431	DN100 PN40	Acc. To EN 1092-1	EN 1.4404 ⁽²⁾
05600-1810-0611	DN150 PN16	Acc. To EN 1092-1	EN 1.4404 ⁽²⁾
05600-1810-0811	DN200 PN16	Acc. To EN 1092-1	EN 1.4404 ⁽²⁾
Galvanized Carbon Steel Flanges (No	te: Longer Lead-time, Consult F	actory)	
Galvanized Carbon Steel Flanges (No Part Number	te: Longer Lead-time, Consult F Flange Size	actory) Dimensions	Material
Galvanized Carbon Steel Flanges (No Part Number 05600-1811-0210	te: Longer Lead-time, Consult F Flange Size ANSI 2 inch Class 150	actory) Dimensions Acc. To ANSI B16.5	Material CS ⁽¹⁾
Galvanized Carbon Steel Flanges (No Part Number 05600-1811-0210 05600-1811-0230	te: Longer Lead-time, Consult F Flange Size ANSI 2 inch Class 150 ANSI 2 inch Class 300	actory) Dimensions Acc. To ANSI B16.5 Acc. To ANSI B16.5	Material CS ⁽¹⁾ CS ⁽¹⁾
Galvanized Carbon Steel Flanges (No Part Number 05600-1811-0210 05600-1811-0230 05600-1811-0310	te: Longer Lead-time, Consult F Flange Size ANSI 2 inch Class 150 ANSI 2 inch Class 300 ANSI 3 inch Class 150	actory) Dimensions Acc. To ANSI B16.5 Acc. To ANSI B16.5 Acc. To ANSI B16.5	Material CS ⁽¹⁾ CS ⁽¹⁾ CS
Galvanized Carbon Steel Flanges (No Part Number 05600-1811-0210 05600-1811-0230 05600-1811-0310 05600-1811-0330	te: Longer Lead-time, Consult F Flange Size ANSI 2 inch Class 150 ANSI 2 inch Class 300 ANSI 3 inch Class 150 ANSI 3 inch Class 300	actory) Dimensions Acc. To ANSI B16.5 Acc. To ANSI B16.5 Acc. To ANSI B16.5 Acc. To ANSI B16.5	Material CS ⁽¹⁾ CS ⁽¹⁾ CS CS
Galvanized Carbon Steel Flanges (No Part Number 05600-1811-0210 05600-1811-0230 05600-1811-0310 05600-1811-0330 05600-1811-0410	te: Longer Lead-time, Consult F Flange Size ANSI 2 inch Class 150 ANSI 2 inch Class 300 ANSI 3 inch Class 150 ANSI 3 inch Class 300 ANSI 4 inch Class 150	Actory) Dimensions Acc. To ANSI B16.5 Acc. To ANSI B16.5 Acc. To ANSI B16.5 Acc. To ANSI B16.5 Acc. To ANSI B16.5	Material CS ⁽¹⁾ CS ⁽¹⁾ CS CS CS
Galvanized Carbon Steel Flanges (No Part Number 05600-1811-0210 05600-1811-0230 05600-1811-0310 05600-1811-0330 05600-1811-0410 05600-1811-0430	te: Longer Lead-time, Consult F Flange Size ANSI 2 inch Class 150 ANSI 2 inch Class 300 ANSI 3 inch Class 150 ANSI 3 inch Class 300 ANSI 4 inch Class 150 ANSI 4 inch Class 300	Acc. To ANSI B16.5 Acc. To ANSI B16.5	Material CS ⁽¹⁾ CS ⁽¹⁾ CS CS CS CS CS CS CS CS
Galvanized Carbon Steel Flanges (No Part Number 05600-1811-0210 05600-1811-0230 05600-1811-0310 05600-1811-0330 05600-1811-0410 05600-1811-0430 05600-1811-0610	te: Longer Lead-time, Consult F Flange Size ANSI 2 inch Class 150 ANSI 2 inch Class 300 ANSI 3 inch Class 150 ANSI 3 inch Class 300 ANSI 4 inch Class 150 ANSI 4 inch Class 300 ANSI 6 inch Class 150	Acc. To ANSI B16.5 Acc. To ANSI B16.5	Material CS ⁽¹⁾ CS ⁽¹⁾ CS
Galvanized Carbon Steel Flanges (No Part Number 05600-1811-0210 05600-1811-0230 05600-1811-0310 05600-1811-0330 05600-1811-0410 05600-1811-0410 05600-1811-0430 05600-1811-0430 05600-1811-0430	te: Longer Lead-time, Consult F Flange Size ANSI 2 inch Class 150 ANSI 2 inch Class 300 ANSI 3 inch Class 150 ANSI 3 inch Class 300 ANSI 4 inch Class 150 ANSI 4 inch Class 150 ANSI 6 inch Class 150 ANSI 8 inch Class 150	Actory) Dimensions Acc. To ANSI B16.5 Acc. To ANSI B16.5	Material CS ⁽¹⁾ CS ⁽¹⁾ CS
Galvanized Carbon Steel Flanges (No Part Number 05600-1811-0210 05600-1811-0230 05600-1811-0310 05600-1811-0330 05600-1811-0430 05600-1811-0430 05600-1811-0430 05600-1811-0430 05600-1811-0430 05600-1811-0430 05600-1811-0430 05600-1811-0430	te: Longer Lead-time, Consult F Flange Size ANSI 2 inch Class 150 ANSI 2 inch Class 300 ANSI 3 inch Class 150 ANSI 3 inch Class 300 ANSI 4 inch Class 150 ANSI 4 inch Class 150 ANSI 6 inch Class 150 ANSI 8 inch Class 150 DN50 PN40	Acc. To ANSI B16.5 Acc. To EN 1092-1	Material CS ⁽¹⁾ CS ⁽¹⁾ CS CS <td< td=""></td<>
Galvanized Carbon Steel Flanges (No Part Number 05600-1811-0210 05600-1811-0230 05600-1811-0310 05600-1811-0330 05600-1811-0410 05600-1811-0430 05600-1811-0430 05600-1811-0430 05600-1811-0430 05600-1811-0430 05600-1811-0430 05600-1811-0430 05600-1811-0430 05600-1811-0430 05600-1811-0430 05600-1811-0430 05600-1811-0430	te: Longer Lead-time, Consult F Flange Size ANSI 2 inch Class 150 ANSI 2 inch Class 300 ANSI 3 inch Class 150 ANSI 3 inch Class 300 ANSI 4 inch Class 150 ANSI 4 inch Class 150 ANSI 6 inch Class 150 ANSI 8 inch Class 150 DN50 PN40 DN80 PN16	actory) Dimensions Acc. To ANSI B16.5 Acc. To EN 1092-1	Material CS ⁽¹⁾ CS ⁽¹⁾ CS CS CS CS CS CS CS CS CS CS ⁽²⁾ CS ⁽²⁾
Galvanized Carbon Steel Flanges (No Part Number 05600-1811-0210 05600-1811-0230 05600-1811-0310 05600-1811-0330 05600-1811-0410 05600-1811-0430 05600-1811-0430 05600-1811-0430 05600-1811-0610 05600-1811-0610 05600-1811-0610 05600-1811-0610 05600-1811-0610 05600-1810-0230 05600-1810-0310 05600-1810-0330	te: Longer Lead-time, Consult F Flange Size ANSI 2 inch Class 150 ANSI 2 inch Class 300 ANSI 3 inch Class 150 ANSI 3 inch Class 300 ANSI 4 inch Class 150 ANSI 4 inch Class 150 ANSI 6 inch Class 150 DN50 PN40 DN80 PN16 DN80 PN40	Acc. To ANSI B16.5 Acc. To EN 1092-1 Acc. To EN 1092-1	Material CS ⁽¹⁾ CS ⁽¹⁾ CS CS CS CS CS CS CS CS CS ⁽²⁾ CS ⁽²⁾ CS ⁽²⁾
Galvanized Carbon Steel Flanges (No Part Number 05600-1811-0210 05600-1811-0230 05600-1811-0310 05600-1811-0330 05600-1811-0410 05600-1811-0430 05600-1811-0430 05600-1811-0430 05600-1811-0430 05600-1811-0610 05600-1811-0610 05600-1811-0310 05600-1810-0330 05600-1810-0330	te: Longer Lead-time, Consult F Flange Size ANSI 2 inch Class 150 ANSI 2 inch Class 300 ANSI 3 inch Class 150 ANSI 3 inch Class 300 ANSI 4 inch Class 150 ANSI 4 inch Class 150 ANSI 6 inch Class 150 DN50 PN40 DN80 PN16 DN80 PN40 DN100 PN16	actory) Dimensions Acc. To ANSI B16.5 Acc. To EN 1092-1 Acc. To EN 1092-1 Acc. To EN 1092-1 Acc. To EN 1092-1	Material CS ⁽¹⁾ CS ⁽¹⁾ CS CS CS CS CS CS CS CS CS ⁽²⁾ CS ⁽²⁾ CS ⁽²⁾ CS ⁽²⁾ CS ⁽²⁾
Galvanized Carbon Steel Flanges (No Part Number 05600-1811-0210 05600-1811-0230 05600-1811-0310 05600-1811-030 05600-1811-0410 05600-1811-0410 05600-1811-0430 05600-1811-0430 05600-1811-0430 05600-1811-0610 05600-1811-0610 05600-1810-0230 05600-1810-0230 05600-1810-0310 05600-1810-0330 05600-1810-0410 05600-1810-0430	te: Longer Lead-time, Consult F Flange Size ANSI 2 inch Class 150 ANSI 2 inch Class 300 ANSI 3 inch Class 150 ANSI 3 inch Class 300 ANSI 4 inch Class 150 ANSI 4 inch Class 150 ANSI 6 inch Class 150 DN50 PN40 DN80 PN16 DN80 PN40 DN100 PN40	actory) Dimensions Acc. To ANSI B16.5 Acc. To EN 1092-1	Material CS ⁽¹⁾ CS ⁽¹⁾ CS CS ⁽²⁾
Galvanized Carbon Steel Flanges (No Part Number 05600-1811-0210 05600-1811-0230 05600-1811-0310 05600-1811-030 05600-1811-0410 05600-1811-0410 05600-1811-0430 05600-1811-0430 05600-1811-0430 05600-1811-0410 05600-1810-0230 05600-1810-0330 05600-1810-0410 05600-1810-0430 05600-1810-0430	te: Longer Lead-time, Consult F Flange Size ANSI 2 inch Class 150 ANSI 2 inch Class 300 ANSI 3 inch Class 150 ANSI 3 inch Class 300 ANSI 4 inch Class 150 ANSI 4 inch Class 150 ANSI 6 inch Class 150 DN50 PN40 DN80 PN16 DN80 PN16 DN100 PN40 DN100 PN40 DN150 PN40	Dimensions Acc. To ANSI B16.5 Acc. To EN 1092-1 Acc. To EN 1092-1	Material CS ⁽¹⁾ CS ⁽¹⁾ CS CS <td< td=""></td<>

(1) Use gasket type la.
(2) Gasket type according to EN 1514-1 and bolting according to EN1515-2.

Reference Manual

00809-0100-4024, Rev BA September 2005

Appendix B	Product Certifications
	Approved Manufacturing Locationspage B-1European Union Directive Informationpage B-1ATEX Directive (94/9/EC)page B-5Ordinary Location Certification for Factory Mutualpage B-5Canadian Registration Number (CRN)page B-5Hazardous Locations Certificationspage B-6ATEX Approval Drawingspage B-13
APPROVED MANUFACTURING LOCATIONS	Saab Rosemount Tank Radar AB – Gothenburg, Sweden
EUROPEAN UNION DIRECTIVE INFORMATION	The EC declaration of conformity for all applicable European directives for this product can be found on the Rosemount website at www.rosemount.com. A hard copy may be obtained by contacting our local sales representative.
5600 Series Radar Level Transmitter	This section lists specific requirements which have to be fulfilled to secure a safe installation and use of 5600 Series Radar Level Transmitter in a hazardous area. Omission may jeopardize safety, and Emerson Process Management will not take any responsibility if requirements as listed below are not fulfilled.
	Table B-1. ATEX marking and EX Certification code
	ATEX Marking Safety Coding Outputs
	EEX de IIC T6 (40° to $+70^{\circ}$ C) Non-Intrinsically Safe (Non-IS)

ATEA Marking	oalety obtailing	Outputs
€ II 1/2 GD	EEx de IIC T6 (-40° to +70°C)	Non-Intrinsically Safe (Non-IS) Primary and/or Secondary outputs
🔂 II (2) (1) 1/2 GD	EEx de [ib] [ia] IIC T6 (-40° to +70°C)	IS Display output. IS Primary output, and/or IS Secondary output
🕞 II (1) 1/2 GD	EEx de [ia] IIC T6 (-40° to +70°C)	IS Display output. Non-IS Primary output, and/or Non-IS Secondary output

Intrinsically safe (IS) entity parameters

The unit can be equipped with various types of outputs, each type of IS configuration has specific entity parameters. The output configuration is shown on the main label of each unit.

- Passive analog output 4-20mA, Label identification = HART passive Voltage compliance 7-30V, Ui < 30V, Ii < 200mA, Pi < 1.3 W, Ci = 0μF, Li = 0mH.
- Active analog output 4-20mA, Label identification = HART active Max load 300Ω , Uo = 23.1V, Io = 125.7mA, Po = 0.726W, Cext < 0.14µF, Lext < 2.2mH.
- Foundation fieldbus, Label identification = Foundation Fieldbus Ui < 30V, Ii < 300mA, Pi < 1.3W, Ci = 0μF, Li = 0mH.

Instructions specific to hazardous area installations

The 5600 Series Radar Level Transmitter has been certified to comply with Directive 94/9/EC of the European Parliament and the Council as published in the Official Journal of the European Communities no. L 100/1.

The following instructions apply to equipment covered by certificate numbers Sira03ATEX1294X:

- 1. The equipment may be used with flammable gases and vapors with apparatus Group IIC.
- 2. The Transmitter Head is certified for installation in a cat 1 area and for use in ambient temperatures in the range of -40°C to +70°C and should not be used outside this temperature range.
- 3. The antenna including tank seal is designed to be mounted across the boundary between a cat 1 and cat 2 area. There are various cat 1 areas within the range from -40°C to +400°C, -1 to 55 bar that can be considered. It is the responsibility of the user to select the appropriate antenna including tank seal to match the tank process conditions, see Table B-2. Antenna type, size, and tank seal material can be found on the antenna label.

		_	
[ab	le	B-	-2.

_					
	Antenna Type	Size	Tank Seal Material	Temperature Range	Pressure Range (linear interpolation between breakpoints)
-	Cone Pipe	All	PTFE	-40 to +200°C	-1 to 10 bar @ -40°C -1 to 10 bar @ 100°C -1 to 5 bar @ 200°C
	Cone Pipe	All	Quartz	-40 to +400°C	-1 to 55 bar
	Cone/purging	All	PTFE	-40 to +200°C	-1 to 10 bar
	Cone/purging	All	Quartz	-40 to +400°C	-1 to 10 bar
	Process Seal	4-in. / DN100	PTFE	-40 to +150°C	-1 to 5 bar @ -40°C 0 bar @ +150°C
	Process Seal	6-in. / DN150	PTFE	-40 to +150°C	-1 to 2 bar @ -40°C 0 bar @ +150°C
	Rod 100 Rod 250	All	PTFE	-40 to +200°C	25 bar @ -40°C 25 bar @ 100°C 16 bar @ 200°C
	Parabolic Parabolic	18-in. / Welded 18-in. / Clamped	PTFE	-40 to +230°C -40 to +230°C	-1 to 10 bar -0.5 to 0.5 bar

- 4. The product must be installed by suitably trained personnel and carried out in accordance with all appropriate international, national, and local standard codes of practice and site regulations for intrinsically safe apparatus and in accordance with the instructions contained within this manual.
- 5. Repair of this equipment shall be carried out by the manufacturer or in accordance with the applicable code of practice.
- 6. All externally connected intrinsically safe apparatus must comply with the specified IS entity parameters.
- 7. The Flameproof/Explosionproof enclosure may not be opened while energized.
- 8. The certificate marking is detailed on drawing numbers 9150076-931 and 9150076-932.
- 9. The certificate has special conditions for safe use associated with it, denoted by the X on the end of the certificate no., which must be observed when the equipment is installed.
- 10. The certification of this equipment relies on the following materials used in its construction:

If the equipment is likely to come into contact with aggressive substances, then it is the responsibility of the user to take suitable precautions that prevent it from being adversely affected, thus ensuring that the type of protection is not compromised.

Aggressive substances - e.g. solvents that may affect polymeric materials.

Suitable precautions - e.g. regular checks as part of routine inspections or establishing from the material's data sheet that it is resistant to specific chemicals.

Special Conditions for Safe Use (X)

- 1. As alloys may be used as the enclosure (or other parts) material and be at the accessible surface of this equipment, in the event of rare incidents, ignition sources due to impact and friction sparks could occur. This shall be considered when the equipment is being installed in locations that specifically require group II, category 1G equipment.
- 2. Under certain extreme circumstances, the non-metallic parts of the equipment may be capable of generating an ignition-capable level of electrostatic charge. Therefore, when used for applications that specifically require group II, category 1 equipment, the equipment shall not be installed in a location where the external conditions are conducive to the build-up of electrostatic charge on such surfaces. Additionally, the equipment non-metallic parts shall only be cleaned with a damp cloth.

2210 Display Unit The 2210 Display Unit can installed as a remote mounted local readout unit for a 5600 Series Radar Level Transmitter or be factory mounted attached directly to the Radar Level Transmitter head enclosure. The remote version has an optional I/O terminal card TP40 for temperature measurement.

> The 2210 Display unit is certified to comply with Directive 94/9/EC of the European Parliament and the Council as published in the Official Journal of the European Communities No. L 100/1.

ATEX Marking and EX Certification code

Table B-3. ATEX marking and EX Certification code

	ATEX Marking	Safety Coding
2210 DU without TP40	© II 2 G	EEx ib IIC T4 (-40° to +70°C)
2210 DU including TP40	🕞 II (2) (1) G	EEx ib [ia] IIC T4 (-40° to +70°C)

Intrinsically Safe (IS) Entity Parameters

- Connector X2: Ui = 12V, Ii = 400mA, Pi = 0.7W
- Optional TP40, connector X17 and X18: Uo = 5.88V, Io = 172.4mA, Po = 0.253W

The capacitance or either the inductance or the inductance to resistance (L/R) ratio of the cable connected to the connectors X17 and X18 must not exceed the following values:

Table B-4.

Gas Group	Capacitance μF	Inductance μH	or	L/R Ratio µH/Ohm
IIC	43	0.7		140
IIB	1000	5.2		560
IIA	1000	10		1120

	Instructions Specific to Hazardous Area Installations	
	The following instructions apply to equipment covered by certificate number Sira 00ATEX2062:	
	 The equipment may be used with flammable gases and vapors with apparatus groups IIC, IIB, and IIA and with temperature classes T1, T2, T3, and T4. 	
	 The equipment is only certified for use in ambient temperatures in the range -40°C to +70°C and should not be used outside this range. 	
	 Installation shall be carried out in accordance with the applicable code of practice. 	
	 Repair of this equipment shall be carried out in accordance with the applicable code of practice. 	
	 Certification marking as detailed in drawing numbers 9150 074-801, 9150 074-802, and 9150 074-803. 	
ATEX DIRECTIVE (94/9/EC)	Rosemount Inc. complies with the ATEX Directive.	
ORDINARY LOCATION CERTIFICATION FOR FACTORY MUTUAL	As standard, the transmitter has been examined and tested to determine that the design meets basic electrical, mechanical, and fire protection requirements by FM, a nationally recognized testing laboratory (NRTL) as accredited by the Federal Occupational Safety and Health Administration (OSHA).	
CANADIAN REGISTRATION NUMBER (CRN)	The product design of the Cone Antenna has been accepted and registered for use in Canada. CRN: 0F1015.9C	

HAZARDOUS	ATEX Approvals		
LUCATIONS CERTIFICATIONS	5600 Series Level Transmitter		
	E1 Certificate Number: Sira 03ATEX 1294X		
	With Intrinsically Safe Outputs		
	ATEX Marking: 🐵 II (2) (1) 1/2 GD		
	Safety Coding: EEx de [ib] [ia] IIC T6 (T _{amb} -40°C, +70°C)		
	With Non-IS Primary Output and IS Display Output		
	ATEX Marking: 💿 II (1) 1/2 GD		
	Safety Coding: EEx de [ia] IIC T6 (T _{amb} -40°C, +70°C)		
	With Non-IS Primary and/or Non-IS Secondary Outputs and without Display Panel Output		
	ATEX Marking:		
	Max supply voltage: 55 Vdc		
	Passive analog output 4-20mA,		
	Label identification = HART passive.		
	Voltage compliance 7-30V:		
	U _i < 30 V		
	l _i < 200 mA		
	Pi < 1.3 W		
	$C_i = 0 \ \mu F$		
	L _i = 0 mH		
	Active analog output 4-20mA,		
	Label identification = HART active.		
	Max load 300Ω:		
	U _o < 23.1 V		
	l _o < 125.7 mA		
	P _o < 0.726 W		
	C _{ext} <0.14 μF		
	L_{ext} < 2.2 mH		
	FOUNDATION Fieldbus,		
	Label identification = FOUNDATION fieldbus.		
	U _i < 30 V		
	l _i < 300 mA		
	P _i < 1.3 W		
	C _i = 0 μF		
	L _i = 0 mH		
2210 Display Unit

E1 Certificate Number: Sira 00ATEX 2062

Without Temperature Inputs

ATEX Marking: 🐼 II 2 G

Safety Coding: EEx ib IIC T4 (T_{amb} -40°C, +70°C)

With Temperature Inputs

ATEX Marking: 🐼 II 2 (1) G

Safety Coding: EEx ib [ia] IIC T4, (T_{amb} -40°C, +70°C)

Factory Mutual (FM)

5600 Series Level Transmitter

E5 Certificate Number: 4D5A9.AX

With Intrinsically safe outputs (all versions except those listed below)

Explosion proof with IS outputs for HAZLOC

Class I, Division 1, Group A, B, C and D, T6

Max operating temperature +70°C

Dust ignition proof for use in Class II/III, Division 1, Groups E, F, and G, T5.

Use conductors rated at least 85°C

Shall be installed in accordance with System control drawing 9150074-994.

With Non-IS Secondary Outputs (codes 1 and 3)

Explosion proof

Class I, Division 1, Group A, B, C and D, T6

Max operating temperature +70°C

Dust ignition proof for use in Class II/III, Division 1, Groups E, F, and G, T5.

Use conductors rated at least 85°C

2210 Display Unit

E5 Certificate: 3008356

All Versions

Intrinsic Safe for HAZLOC

Class I, Division 1, Group A, B, C and D T4

Max operating temperature +70°C

Shall be installed in accordance with System control drawing 9150074-997.

Canadian Standards Association (CSA)

5600 Series Level Transmitter

E6 Certificate Number: 2003.153280-1346169
With Non-IS Primary and/or Non-IS Secondary Outputs
Explosion proof Ex de IIC T6
Shall be installed in accordance with System control drawing 9150074-937.
Factory seal, conduit seal not required.

With IS Display Outputs, IS Primary and/or IS Secondary Outputs.

Explosion proof Ex de [ib/ia] IIC T6

Shall be installed in accordance with System control drawing 9150074-939.

Factory seal, conduit seal not required.

2210 Display Unit

E6 Certificate Number: 2003.153280-1346165

Without Temperature Inputs Intrinsically safe EEx ib IIC T4, (T_{amb} -40°C, +70°C) With Temperature Inputs Intrinsically safe EEx ib [ia] IIC T4, (T_{amb} -40°C, +70°C) Shall be installed in accordance with System control drawing 9150074-944.

Reference Manual 00809-0100-4024, Rev BA September 2005

Rosemount 5600 Series

ATEX APPROVAL DRAWINGS

5600/INSTALLATION DRAWINGS/9150 074-936.EPS

Reference Manual 00809-0100-4024, Rev BA September 2005

Reference Manual 00809-0100-4024, Rev BA September 2005

CSA APPROVAL DRAWINGS

56005600_11_AA.EPS

00809-0100-4025, Rev BA September 2005

Appendix C

Level Transducer Block

Supported Units	 page C-7
Channel Assignments	 page C-1

This section contains information on the 5600 Transducer Block (TB). Descriptions of all Transducer Block parameters, errors, and diagnostics are listed. Also, the modes, alarm detection, status handling, application information, and troubleshooting are discussed.

Figure C-1. Transducer Block Diagram

Overview

Definition

The transducer block contains the actual measurement data, including a level and distance reading. Channels 1–6 are assigned to these measurements (see Figure C-1). The transducer block includes information about sensor type, engineering units, and all parameters needed to configure the radar transmitter.

Channel Definitions

Each input has a channel assigned to it allowing the AI block to link to it. The channels for the Rosemount 5600 are the following:

Al-block	TB channel Value	Process variable
Level	1	CHANNEL_RADAR_LEVEL
Ullage	2	CHANNEL_RADAR_ULLAGE
Level Rate	3	CHANNEL_RADAR_LEVELRATE
Signal Strength	4	CHANNEL_RADAR_SIGNAL_STRENGTH
Volume	5	CHANNEL_RADAR_VOLUME
Average Temperature	6	CHANNEL_RADAR_AVG_TEMP

www.rosemount.com

Table C-1. Channel Assignments

Parameters and Descriptions

Table C-2. Level Transducer Block Parameters and Descriptions

Parameter	Number	Description
ST_REV	1	The revision level of the static data associated with the function block. The revision value increments each time a static parameter value in the block is changed.
TAG DESC	2	The user description of the intended application of the block.
STRATEGY	3	The strategy field can be used to identify grouping of blocks. This data is not
		checked or processed by the block.
ALERI_KEY	4	host for sorting alarms, etc.
MODE_BLK	5	The actual, target, permitted, and normal modes of the block. Target: The mode to "go to" Actual: The mode the "block is currently in" Permitted: Allowed modes that target may take on Normal: Most common mode for target
BLOCK_ERR	6	This parameter reflects the error status associated with the hardware or software components associated with a block. It is a bit string, so that multiple errors may be shown.
UPDATE_EVT	7	This alert is generated by any change to the static data.
BLOCK_ALM	8	The block alarm is used for all configuration, hardware, connection failure or system problems in the block. The cause of the alert is entered in the subcode field. The fist alert to become active will set the Active status in the Status parameter. As soon as the Unreported status is cleared by the alert reporting task, another block alert may be reported without clearing the Active status, if the subcode has changed.
TRANSDUCER_DIRECTORY	9	Directory that specifies the number and starting indices of the transducers in the transducer block.
TRANSDUCER_TYPE	10	Identifies the transducer.
XD_ERROR	11	A transducer block alarm subcode.
COLLECTION_DIRECTORY	12	A directory that specifies the number, starting indices, and DD Item ID's of the data collections in each transducer within a transducer block.
RADAR_LEVEL_TYPE	13	See Table C-7 on page C-5
RADAR_LEVEL	14	Level Value
RADAR_LEVEL_RANGE	15	See Table C-14 on page C-7
RADAR_ULLAGE	16	Ullage value
RADAR_LEVELRATE	17	Level Rate value
RADAR_LEVELRATE_RANGE	18	Ref corresponding unit
RADAR_SIGNAL_STRENGTH	19	Signal strength valve
RADAR_SIGNAL_STRENGTH_RANGE	20	See Table C-16 on page C-7
RADAR_VOLUME	21	Volume valve
RADAR_VOLUME_RANGE	22	See Table C-17 on page C-7
RADAR_AVG_TEMP	23	Average Temperature
RADAR_TEMP_1	24	Spot temperature 1
RADAR_TEMP_RANGE	25	See Table C-15 on page C-7
RADAR_TEMP_2	26	Spot temperature 2
	27	Spot temperature 3
RADAR_IEMP_4	28	Spot temperature 4
	29	Spot temperature 5
	30	Antonno Tuno, eco Toble C 2 on page C 4
ANTENNA_TTPE	31	Antenna Type, see Table C-3 off page C-4

00809-0100-4025, Rev BA September 2005

Parameter	Index Number	Description
ANTENNA TCL	32	TCL (Tank connection Length)
ANTENNA PIPE DIAM	33	Pipe Diameter, see document 00809-0100-4024
GEOM DIST OFFSET	34	Distance offset, see document 00809-0100-4024
GEOM_TANK_HEIGHT	35	Tank Height, see document 00809-0100-4024
GEOM_MIN_LEVEL_OFFSET	36	Minimum distance offset, see document 00809-0100-4024
GEOM_HOLD_OFF	37	Hold Off, see document 00809-0100-4024
GEOM_CAL_DISTANCE	38	Calibration Distance
GEOM_TANK_TYPE	39	Tank Type, see Table C-7 on page C-5, see document 00809-0100-4024
GEOM_TANK_BOTTOM_TYPE	40	Tank Bottom Type, see Table C-8 on page C-5, see document 00809-0100-4024
ENV_ENVIRONMENT	41	
ENV_PRESENTATION	42	
ENV_DEVICE_MODE	43	Switch to sensor bus
ENV_TANK_TYPE_OPTIONS	44	Tank Type Options, see Table C-7 on page C-5
ENV_DIELECTR_CONST	45	Dielectrical Constant
DIAGN_DEV_ERR	46	
DIAGN_VERSION	47	Transmitter SW version
DIAGN_REVISION	48	P1451 revision (NOTE: This version must be checked by the Output Board in
		order to verify that the software is compatible.)
DIAGN_DEVICE_ID	49	Device ID for the transmitter
TEMP_NUM_SENSORS	50	Num Temp Spots
TEMP_SENSOR_TYPE	51	Sensor Type
TEMP_INSERT_DIST	52	Insertion distance
TEMP_EXCL_AVG_CALC	53	Exclude from Avg. Temp. calculation
TEMP_POS_1	54	Position sensor 1
TEMP_POS_2	55	Position sensor 2
TEMP_POS_3	56	Position sensor 3
TEMP_POS_4	57	Position sensor 4
TEMP_POS_5	58	Position sensor 5
TEMP_POS_6	59	Position sensor 6
STATS_ATTEMPTS	60	Ref 3
STATS_FAILURES	61	Ref 3
STATS_TIMEOUTS	62	Ref 3

Table C-3. Antenna Type

VALUE	ANTENNNA_TYPE
0	User Defined
1	Cone 4, PTFE
2	Cone 4, QUARTZ
3	Reserved
4	Reserved
5	Cone 6, PTFE
6	Cone 6, QUARTZ
7	Reserved
8	Reserved
9	Cone 8, PTFE
10	Cone 8, QUARTZ
11	Reserved
12	Reserved
13	Pipe, PTFE
14	Pipe, QUARTZ
15	Rod
16	Parabolic
17	Process Seal 4 PTFE
18	Process Seal 4 Ceramic
19	Process Seal 6 PTFE
20	Process Seal 6 Ceramic
21	Cone 3, PTFE
22	Cone 3, QUARTZ
23	Pipe ITG 6, PTFE
24	Pipe ITG 8, PTFE
25	Pipe ITG 10, PTFE
26	Pipe ITG 12, PTFE

Table C-4. Device Mode

Value	ENV_DEVICE_MODE
0	FF bus
1	Sensorbus
2	Restart device
3	Set to factory default database

Table C-5. Environment

Bit Number	Value of ENV_ENVIRONMENT	Description
0	0	-
1	0X0000001	Reserved
2	0x0000002	Rapid Changes
3	0x0000004	Reserved
4	0x0000008	Turbulent Surface
5	0x0000010	Foam
6	0x00000020	Solid Product

Reference Manual 00809-0100-4025, Rev BA

September 2005

Rosemount 5600 Series

Table C-6. Presentation

Bit Number	Value of Env. Presentation	Description
0	0	- Decentrad
	0x0000001	Reserved
2	0x0000002	Reserved
3	0x0000004	Reserved
4	0x0000008	Bottom echo visible
5	0x0000010	Tank contains double bounce
6	0x0000020	Slow Search
7	0x0000040	Double Surfaces
8	0x0000080	Select lower surface
9	0x00000100	-
10	0x0000200	Show negative levels as zero
11	0x00000400	Reserved
12	0x0000800	Reserved
13	0x00001000	Reserved
14	0x00002000	Reserved
15	0x00004000	Invalid level is NOT set if tank is empty
16	0x00008000	If set and if bit 12 not set, Invalid level is NOT set if
		tank is full
17	0x00010000	-
18	0x00020000	Reserved
19	0x00040000	Reserved

Table C-7. Tank Type

Value	GEOM_TANK_TYPE
0	Unknown
1	Vertical Cylinder
3	Horizontal Cylinder
4	Spherical
5	Cubical

Table C-8. Tank Bottom Type

Value	GEOM_TANK_BOTTOM_TYPE
0	Unknown
1	Flat
2	Dome
3	Cone
4	Flat Inclined

Table C-9. Dielectrical Constant

Value	ENV_DIELECTR_CONST
0	Unknown
1	Range (1-2, 5)
2	Range (2, 4-5)
3	Range (4-10)
4	Range (>10)

Diagnostics Device Errors

In addition to the BLOCK_ERR and XD_ERROR parameters, more detailed information on the measurement status can be obtained via DIAGN_DEV_ERR. Table C-10 on page C-6 lists the potential errors and the possible corrective actions for the given values. The corrective actions are in order of increasing system level compromises. The first step should always be to reset the transmitter and then if the error persists, try to the steps in Table C-10. Start with the first corrective action and then try the second.

Table C-10. Device Errors Diagnostics

	Value of		
Bit Number	DIAGN_DEV_ERR	Description	Corrective Actions
0	0	No alarm active	See page 6-1
1	0x0000001	Reserved	See page 6-1
2	0x0000002	FF card to transmitter comm fault	See page 6-1
3	0x0000004	Level Measurement Failure	See page 6-1
4	0x0000008	Temperature Measurement Failure	See page 6-1
5	0x0000010	Volume Measurement Failure	See page 6-1
6	0x0000020	Invalid ATP	See page 6-1
7	0x0000040	No surface echo	See page 6-1
8	0x0000080	Tank signal clip warning	See page 6-1
9	0x00000100	Empty Tank	See page 6-1
10	0x00000200	Full Tank	See page 6-1
11	0x00000400	Conf. Reg. Pwd. Enabled	See page 6-1
12	0x0000800	DB Error	See page 6-1
13	0x00001000	Microwave unit error	See page 6-1
14	0x00002000	Display error	See page 6-1
15	0x00004000	Analog out error	See page 6-1
16	0x00008000	Other HW error	See page 6-1
17	0x00010000	Configuration error	See page 6-1
18	0x00020000	SW error	See page 6-1
19	0x00040000	DB Warning	See page 6-1
20	0x00080000	Microwave unit Warning	See page 6-1
21	0x00100000	Display Warning	See page 6-1
22	0x00200000	Analog out Warning	See page 6-1
23	0x00400000	Other HW Warning	See page 6-1
24	0x00800000	Configuration Warning	See page 6-1
25	0x01000000	SW Warning	See page 6-1

Table C-11. Temperature sensor type

Value	TEMP_CONV_METHOD Description
0	User defined linearization table
1	User defined formula
2	DIN PT 100
3	CU90

Table C-12. Exclude from avg. temp. calculation

Bit Number	Value of TEMP_EXCL_AVG_CALC	Description
0	0	-
1	0x0000001	Reserved
2	0x0000002	Exclude nbr. 1
3	0x0000004	Exclude nbr. 2
4	0x0000008	Exclude nbr. 3
5	0x0000010	Exclude nbr. 4
6	0x0000020	Exclude nbr. 5
7	0x00000040	Exclude nbr. 6

SUPPORTED UNITS

Unit codes

Table C-13. Length

Value	Display	Description
1010	m	meter
1018	ft	feet
1019	in	inch
1013	mm	millimeter

Table C-14. Level Rate

Value	Display	Description
1067	ft/s	feet per second
1061	m/s	meter per second
1063	m/h	meter per hour

Table C-15. Temperature

Value	Display	Description
1000	К	Kelvin
1001	٥°	Degree Celsius
1002	°F	Degree Fahrenheit

Table C-16. Signal Strength

Value	Display	Description
1243	mV	Millivolt

Table C-17. Volume

Value	Display	Description
1034	m ³	Cubic meter
1048	Gallon	US gallon
1051	bbl	barrel
1043	ft ³	Cubic feet

Methods

Refer to "Methods and Manual Operation" on page 8-4.

00809-0100-4024, Rev AA September 2005

Appendix D Resource Block

Overview	page D-1
Parameters and Descriptions	page D-2

OVERVIEW

This section contains information on the Rosemount 5600 Series Radar Level Transmitter Resource Block. Descriptions of all Resource Block Parameters, errors, and diagnostics are included. Also the modes, alarm detection, status handling, and troubleshooting are discussed.

Definition

The resource block defines the physical resources of the device. The resource block also handles functionality that is common across multiple blocks. The block has no linkable inputs or outputs.

PARAMETERS AND DESCRIPTIONS

The table below lists all of the configurable parameters of the Resource Block, including the descriptions and index numbers for each.

	Index	
Parameter	Number	Description
ACK_OPTION	38	Selection of whether alarms associated with the function block will be automatically acknowledged.
ADVISE_ACTIVE	82	Enumerated list of advisory conditions within a device.
ADVISE_ALM	83	Alarm indicating advisory alarms. These conditions do not have a direct impact on the process or device integrity.
ADVISE_ENABLE	80	Enabled ADVISE_ALM alarm conditions. Corresponds bit for bit to the ADVISE_ACTIVE. A bit on means that the corresponding alarm condition is enabled and will be detected. A bit off means the corresponding alarm condition is disabled and will not be detected.
ADVISE_MASK	81	Mask of ADVISE_ALM. Corresponds bit of bit to ADVISE_ACTIVE. A bit on means that the condition is masked out from alarming.
ADVISE_PRI	79	Designates the alarming priority of the ADVISE_ALM
ALARM_SUM	37	The current alert status, unacknowledged states, unreported states, and disabled states of the alarms associated with the function block.
ALERT_KEY	04	The identification number of the plant unit.
BLOCK_ALM	36	The block alarm is used for all configuration, hardware, connection failure or system problems in the block. The cause of the alert is entered in the subcode field. The first alert to become active will set the Active status in the Status parameter. As soon as the Unreported status is cleared by the alert reporting task, another block alert may be reported without clearing the Active status, if the subcode has changed.
BLOCK_ERR	06	This parameter reflects the error status associated with the hardware or software components associated with a block. It is a bit string, so that multiple errors may be shown.
CLR_FSAFE	30	Writing a Clear to this parameter will clear the device FAIL_SAFE if the field condition has cleared.
CONFIRM_TIME	33	The time the resource will wait for confirmation of receipt of a report before trying again. Retry will not happen when CONFIRM_TIME=0.
CYCLE_SEL	20	Used to select the block execution method for this resource. The Rosemount 5600 supports the following: Scheduled: Blocks are only executed based on the function block schedule. Block Execution: A block may be executed by linking to another blocks completion.
CYCLE_TYPE	19	Identifies the block execution methods available for this resource.
DD_RESOURCE	09	String identifying the tag of the resource which contains the Device Description for this resource.
DD_REV	13	Revision of the DD associated with the resource - used by an interface device to locate the DD file for the resource.
DEFINE_WRITE_LOCK	60	Allows the operator to select how WRITE_LOCK behaves. The initial value is "lock everything". If the value is set to "lock only physical device" then the resource and transducer blocks of the device will be locked but changes to function blocks will be allowed.
DETAILED_STATUS	55	Indicates the state of the transmitter. See Resource Block detailed status codes.
DEV_REV	12	Manufacturer revision number associated with the resource - used by an interface device to locate the DD file for the resource.
DEV_STRING	43	This is used to load new licensing into the device. The value can be written but will always read back with a value of 0.
DEV_TYPE	11	Manufacturer's model number associated with the resource - used by interface devices to locate the DD file for the resource.
DIAG_OPTION	46	Indicates which diagnostics licensing options are enabled.
DISTRIBUTOR	42	Reserved for use as distributor ID. No Foundation enumerations defined at this time.
DOWNLOAD_MODE	67	Gives access to the boot block code for over-the-wire downloads. 0 = Uninitialized 1 = Run mode 2 = Download mode

00809-0100-4024, Rev AA September 2005

Parameter	Number	Description
FAIL SAFE	28	Condition set by loss of communication to an output block, fault promoted to an output
_		block or physical contact. When FAIL_SAFE condition is set, then output function blocks
		will perform their FAIL_SAFE actions.
FAILED_ACTIVE	72	Enumerated list of failure conditions within a device.
FAILED_ALM	73	Alarm indicating a failure within a device which makes the device non-operational.
FAILED_ENABLE	70	Enabled FAILED_ALM alarm conditions. Corresponds bit for bit to the FAILED_ACTIVE.
		A bit on means that the corresponding alarm condition is enabled and will be detected. A
	71	bit of means the corresponding alarm condition is disabled and will not be detected.
FAILED_MASK	71	condition is masked out from alarming.
FAILED_PRI	69	Designates the alarming priority of the FAILED_ALM.
FB_OPTION	45	Indicates which function block licensing options are enabled.
FEATURES	17	Used to show supported resource block options. See Error! Reference source not found.
		The supported features are: SOFT_WRITE_LOCK_SUPPORT,
	10	HARD_WRITE_LOCK_SUPPORT, REPORTS, and UNICODE
FEATURES_SEL	18	Used to select resource block options.
	54	The same final assembly number placed on the neck label.
FREE_SPACE	24	Percent of memory available for further configuration. Zero in a preconfigured device.
	25	Percent of the block processing time that is free to process additional blocks.
GRANT_DENT	14	Options for controlling access of host computers and local control panels to operating,
HARD TYPES	15	The types of hardware available as channel numbers
	52	Hardware revision of the hardware that has the resource block in it
	41	Major revision number of the inter operability test case used in certifying this device as
	41	interoperable. The format and range are controlled by the Fieldbus Foundation.
LIM_NOTIFY	32	Maximum number of unconfirmed alert notify messages allowed.
MAINT_ACTIVE	77	Enumerated list of maintenance conditions within a device.
MAINT_ALM	78	Alarm indicating the device needs maintenance soon. If the condition is ignored, the device will eventually fail.
MAINT_ENABLE	75	Enabled MAINT_ALM alarm conditions. Corresponds bit for bit to the MAINT_ACTIVE. A bit on means that the corresponding alarm condition is enabled and will be detected. A bit
		off means the corresponding alarm condition is disabled and will not be detected. A bit
MAINT_MASK	76	Mask of MAINT_ALM. Corresponds bit of bit to MAINT_ACTIVE. A bit on means that the condition is masked out from alarming
MAINT PRI	74	Designates the alarming priority of the MAINT ALM
MANUFAC ID	10	Manufacturer identification number – used by an interface device to locate the DD file for
	10	the resource.
MAX_NOTIFY	31	Maximum number of unconfirmed notify messages possible.
MEMORY SIZE	22	Available configuration memory in the empty resource. To be checked before
_		attempting a download.
MESSAGE_DATE	57	Date associated with the MESSAGE_TEXT parameter.
MESSAGE_TEXT	58	Used to indicate changes made by the user to the device's installation, configuration, or calibration.
MIN CYCLE T	21	Time duration of the shortest cycle interval of which the resource is capable.
MISC OPTION	47	Indicates which miscellaneous licensing options are enabled.
MODE BLK	05	The actual, target, permitted, and normal modes of the block:
_		Target: The mode to "go to"
		Actual: The mode the "block is currently in"
		Permitted: Allowed modes that target may take on
	00	Normal: Wost common mode for actual
NV_CYCLE_1	23	winimum time interval specified by the manufacturer for writing copies of NV parameters
	1	NV CYCLE T, only those parameters which have changed need to be undated in
		NVRAM.
OUTPUT BOARD SN	53	Output board serial number.

Parameter	Index Number	Description
RB_SFTWR_REV_ALL	51	The string will contains the following fields:
		Major rev: 1-3 characters, decimal number 0-255
		Minor rev: 1-3 characters, decimal number 0-255
		Build rev: 1-5 characters, decimal number 0-255
		Time of build: 8 characters, xX:xX:xX, military time
		Day of week of build. S characters, Sun, Mon,
		Day of month of build: 1-2 characters, decimal number 1-31
		Year of build: 4 characters, decimal
		Builder: 7 characters, login name of builder
RB_SFTWR_REV_BUILD	50	Build of software that the resource block was created with.
RB_SFTWR_REV_MAJOR	48	Major revision of software that the resource block was created with.
RB_SFTWR_REV_MINOR	49	Minor revision of software that the resource block was created with.
RECOMMENDED_ACTION	68	Enumerated list of recommended actions displayed with a device alert.
RESTART	16	Allows a manual restart to be initiated. Several degrees of restart are possible. They are
		the following:
		1 Run – nominal state when not restarting
		2 Restart resource – not used
		START WITH DEFAULTS below for which parameters are set
		4 Restart processor – does a warm start of CPU
PS STATE	07	State of the function block application state machine
	62	Number of EEDDOM block application state machine.
SAVE_CONFIG_BLOCKS	02	down to zero when the configuration is saved
SAVE CONEIG NOW	61	Allows the user to optionally save all pop-volatile information immediately
	65	Status of security switch
	59	Instructs resource block to perform self-test. Tests are device specific
	29	Allows the FAIL SAFE condition to be manually initiated by selecting Set
	29	Time duration at which to give up on computer writes to function block PCas locations
SHED_RCAS	20	Shed from RCas shall never happen when SHED, ROUT = 0
SHED BOUT	27	Time duration at which to give up on computer writes to function block ROut locations
	21	Shed from ROut shall never happen when SHED_ROUT = 0
SIMULATE_IO	64	Status of simulate switch.
SIMULATE_STATE	66	The state of the simulate switch:
		0 = Uninitialized
		1 = Switch off, simulation not allowed
		2 = Switch on, simulation not allowed (need to cycle jumper/switch)
	01	5 – Switch on, simulation allowed
	01	
START_WITH_DEFAULTS	03	0 - Onininalized
		2 = nower-up with default node address
		3 = power-up with default node address
		4 = power-up with default data for the entire communications stack (no application data)
STRATEGY	03	The strategy field can be used to identify grouping of blocks.
SUMMARY STATUS	56	An enumerated value of repair analysis.
TAG DESC	02	The user description of the intended application of the block.
TEST RW	08	Read/write test parameter - used only for conformance testing.
UPDATE_EVT	35	This alert is generated by any change to the static data.
WRITE_ALM	40	This alert is generated if the write lock parameter is cleared.
WRITE_LOCK	34	If set, no writes from anywhere are allowed, except to clear WRITE_LOCK. Block inputs
		will continue to be updated.
WRITE_PRI	39	Priority of the alarm generated by clearing the write lock.
XD_OPTION	44	Indicates which transducer block licensing options are enabled.

Appendix E Register Transducer Block

Register Access Transducer Block Parameters page E-1

OVERVIEW

The Register Transducer Block allows access to Database registers and Input registers of the 5600 Series transmitters. This makes it possible to read a selected set of register directly by accessing the memory location.

The Register Transducer Block is only available with advanced service.

Since this Register Transducer Block allows access to most registers in the transmitter, which includes the registers set by the Methods and Configuration screens, in the Level Transducer Block (see Appendix C: Level Transducer Block) it should be handled with care and ONLY to be changed by trained and certified service personnel, or as guided by Emerson Process Management, Rosemount Division support personnel.

REGISTER ACCESS TRANSDUCER BLOCK PARAMETERS

Parameter	Index Number	Description
ST_REV	1	The revision level of the static data associated with the function block. The revision value increments each time a static parameter value in the block is changed.
TAG_DESC	2	The user description of the intended application of the block.
STRATEGY	3	The strategy field can be used to identify grouping of blocks. This data is not checked or processed by the block.
ALERT_KEY	4	The identification number of the plant unit. This information may be used in the host for sorting alarms, etc.
MODE_BLK	5	The actual, target, permitted, and normal modes of the block. Target: The mode to "go to" Actual: The mode the "block is currently in" Permitted: Allowed modes that target may take on Normal: Most common mode for target
BLOCK_ERR	6	This parameter reflects the error status associated with the hardware or software components associated with a block. It is a bit string, so that multiple errors may be shown.
UPDATE_EVT	7	This alert is generated by any change to the static data.

www.rosemount.com

Parameter	Index Number	Description
BLOCK_ALM	8	The block alarm is used for all configuration, hardware, connection failure or system problems in the block. The cause of the alert is entered in the subcode field. The fist alert to become active will set the Active status in the Status parameter. As soon as the Unreported status is cleared by the alert reporting task, another block alert may be reported without clearing the Active status, if the subcode has changed.
TRANSDUCER_DIRECTORY	9	Directory that specifies the number and starting indices of the transducers in the transducer block.
TRANSDUCER_TYPE	10	Identifies the transducer. 100 = Standard pressure with calibration
XD_ERROR	11	A transducer block alarm subcode.
COLLECTION_DIRECTORY	12	A directory that specifies the number, starting indices, and DD Item ID's of the data collections in each transducer within a transducer block.
INP_SEARCH_START_NBR	13	Search start number for input registers
DB_SEARCH_START_NBR	14	Search start number for holding registers
INP_REG_1_NAME	16	Name of the register
INP_REG_1_FLOAT	17	If the register contains a float value it shall be displayed here
INP_REG_1_INT_DEC	18	If the register contains a DWORD value and <i>dec</i> is chosen, it shall be displayed here
INP_REG_2_NAME	20	
INP_REG_2_FLOAT	21	
INP_REG_2_INT_DEC	22	
INP_REG_3_NAME	24	
INP_REG_3_FLOAT	25	
INP_REG_3_INT_DEC	26	
INP_REG_4_NAME	28	
INP_REG_4_FLOAT	29	
INP_REG_4_INT_DEC	30	
INP_REG_5_NAME	32	
INP_REG_5_FLOAT	33	
INP_REG_5_INT_DEC	34	
	36	
	37	
	30	
	40	
	41	
	42	
	45	
INP_REG_8_INT_DEC	46	
INP REG 9 NAME	48	
INP REG 9 FLOAT	49	
INP REG 9 INT DEC	50	
INP REG 10 NAME	52	
INP REG 10 FLOAT	53	
INP_REG_10_INT_DEC	54	
DB_REG 1 NAME	57	Name of the register
DB_REG_1 FLOAT	58	If the register contains a float value it shall be displayed here
DB_REG_1_INT_DEC	59	If the register contains a DWORD value and <i>dec</i> is chosen, it shall be displayed here
DB_REG_2_NAME	61	

00809-0100-4025, Rev BA September 2005

	Index	
Parameter	Number	Description
DB_REG_2_FLOAT	62	
DB_REG_2_INT_DEC	63	
DB_REG_3_NAME	65	
DB_REG_3_FLOAT	66	
DB_REG_3_INT_DEC	67	
DB_REG_4_NAME	69	
DB_REG_4_FLOAT	70	
DB_REG_4_INT_DEC	71	
DB_REG_4_NAME	73	
DB_REG_4_FLOAT	74	
DB_REG_4_INT_DEC	75	
DB_REG_5_NAME	77	
DB_REG_5_FLOAT	78	
DB_REG_5_INT_DEC	79	
DB_REG_6_NAME	81	
DB_REG_6_FLOAT	82	
DB_REG_6_INT_DEC	83	
DB_REG_7_NAME	85	
DB_REG_7_FLOAT	86	
DB_REG_7_INT_DEC	87	
DB_REG_8_NAME	89	
DB_REG_8_FLOAT	90	
DB_REG_8_INT_DEC	91	
DB_REG_9_NAME	93	
DB_REG_9_FLOAT	94	
DB_REG_9_INT_DEC	95	
DB_REG_10_NAME	97	
DB_REG_10_FLOAT	98	
DB_REG_10_INT_DEC	99	
INP_SEARCH_CHOICE	101	Search for register by name or by number.
INP_SEARCH_START_GROUP	102	Available when searching by name
INP_SEARCH_START_NAME	103	Available when searching by name
DB_SEARCH_CHOICE	104	Search for register by name or by number
DB_SEARCH_START_GROUP	105	Available when searching by name
DB_SEARCH_START_NAME	106	Available when searching by name

00809-0100-4024, Rev BA March 2004

Rosemount 5600 Series

Index

A

Activate Lease Square Filter . . 4-18 Active Adaptive Filter 4-18 Active Jump Filter 4-18 Address Temporary Node6-3 Adjusting the LCD Contrast Rosemount 2210 Display Unit Adjusting the LCD Contrast 7-3 Advanced Configuration 4-6 Analog Output 4-7 Bottom Echo Handling ... 4-14 Calibration Distance 4-6 Distance Offset 4-6 Disturbance Echo Handling 4-11 Empty Tank Handling 4-15 Filtering 4-18 Full Tank Handling 4-15 Minimum Level Offset 4-6 Process Conditions 4-9 Foam 4-9, 6-10 Rapid Level Changes 4-9, 6-10 Solid Products . 4-9, 6-10 Turbulent Surface 4-9, 6-10 Show Negative Values as Zero 4-6 Surface Tracking 4-16 Temperature Measurement 4-9 Number of Sensors . . 4-9 Sensor Mounting Level 1-6 4-9 Volume Calculation 4-10 Analog Input (AI) Block . . . 6-2, 8-9 BLOCK_ERR 8-9 Analog Input (AI) Function Block 8-9 Analog Output 4-7 Antenna 4-3 Hold Off Distance 4-3 Pipe Inner Diameter 4-3 Tank Connection Length . . 4-3 ApprovalsB-6

С

Calibration Distance 4-6, 8-4
Channel 6-10, C-1
Channel Definitions
Level Transducer BlockC-1
Close Distance Window4-16
Commission
HART Communicator 5-7
Cone Antenna
Extended
Mounting
PTFE Sealing
Mounting 2-14, 2-17
Configuration 4-1
Advanced
Analog Input (AI) Function Block
OUT_SCALE6-11
XD_SCALE 6-11
Basic
Tank Geometry4-5
Calibration Distance 8-4
Channel6-10
Delta V
Direct6-11
Indirect 6-11
L_TYPE6-11
Direct6-11
Indirect6-11
Sensor Bus Port 6-16
Connections and Hardware
HART Communicator 5-9
Custom Setup
Rosemount 22107-10
Customized Noise Threshold Table
4-13

D

Delta V
Configure the Parameters .6-4
Fieldbus Device Properties 6-4
Device Revision
Device Tag
Diagnostics Device Errors
Level Transducer Block C-6
Diagram
Function Blocks6-1
Direct6-11
Display Setup
Rosemount 2210
Display Unit
Menu Tree
Distance Filter Factor4-18
Distance Offset4-6
Disturbance Echo Handling4-11
Customized Noise Threshold table
4-13
General Amplitude Threshold 4-12
Registration of False Echoes 4-13
Double Bounce Offset4-17
Double Bounce Possible4-17
Double Surface4-16

Ε

Echo Timeout4-16
Electrical
Connection
Intrinsically Wiring 3-10
Model Code
Non-Intrinsically Wiring 3-9
Installation
Power Supply3-8
Power Connections3-9
Empty Tank Detection Area4-15
Empty Tank Handling4-15
Empty Tank Detection Area 4-15
Entering a Password
Rosemount 22107-4
Entering Numerical Values
Rosemount 2210
Extended
Cone Antenna
Mounting2-37

Reference Manual

00809-0100-4024, Rev BA March 2004

F

FCC Requirements 1-6
Field Upgrades 8-2, 8-7
Labeling 8-2
Filtering 4-18
Activate Jump Filter 4-18
Activate Least Square Filter 4-18
Active Adaptive Filter 4-18
Close Distance Window 4-16
Distance Filter Factor 4-18
Echo Timeout 4-16
Foam 4-9, 6-10
Free Space
Requirements
Full Tank Handling 4-15
Invalid Level Alarm is Not Set if
Tank is Empty 4-15
Function Block
Diagram 6-1

G

General Amplitude Threshold . 4-12
Grounding
Shielded Wire
Guided Setup
Rosemount 2210 7-9

Н

HART Communicator
Commission 5-7
Connections and Hardware 5-9
Level Configuration Example 5-10
Setting the Loop to Manual 5-9
HART Communicator Menu Tree 5-8
HART Fast Keys 5-9
Hazardous Locations
Certifications
FMB-6
Hazardous Locations Installations
See ApprovalsB-6
Hold Off Distance

I

Ideal Tank
Volume Calculation 4-10
Indirect 6-11
Installation
Requirements
Free Space
Nozzle
Rosemount 2210 7-8
Tools 2-2
Intrinsically Wiring
Invalid Level Alarm is Not Set if Tank is
Empty 4-15
Invalid Level Alarm is not Set if Tank is

Empty4-14

Κ

K2 ADE	
Connecting6-1	7
Keys	
HART5-	9
Rosemount 22107-	4

L

L_TYPE 6-11 6-11
Label
Language
Rosemount 2210
Level above Min. Distance Possible
4-16
Level Configuration Example
HART Communicator 5-10
Level Transducer Block
Channel DefinitionsC-1
Diagnostics Device Errors .C-6
Parameters and Descriptions C-2
Supported UnitsC-7
Unit CodesC-7

Μ

Manual Operation
Master Reset Method
Resource Block8-4
Measurement Principle1-4
Menu Tree
2210 Display Unit 7-2
HART Communicator 5-8
Methods8-4
Minimum Level Offset4-6
Model Code
Mounting
Cone Antenna
Extended 2-37
PTFE Sealing . 2-14, 2-17
Still-pipe/Bridle2-25
Parabolic Antenna2-31
Process Seal Antenna 2-22
Rod Antenna
Threaded Version 2-11

Ν

Node Address6-3
Non-Intrinsically Wiring3-9
Number of Sensors4-9

0

Operation													. 6-2	2
Block	In	s	ta	ır	nti	ia	ıti	io	n				. 8-6	ô

Calibration Distance Configuration
8-4
Master Reset Method
Resource Block 8-4
Rosemount 2210
Service Method
Write Protection
Resource Block 8-4
WRITE_LOCK Parameter .8-5
OUT_SCALE6-11
L_TYPE
Direct 6-11
Indirect6-11
Output
Analog4-7

Ρ

Parabolic Antenna
Mounting
BLUCK_ERR 8-8, 8-9
CHANNEL
OUT_SCALE
Register Transducer Block E-1
XD_SCALE
Password 7.8
Rosemount 2210
PC Configuration Software Radar Mas
Ter
Pipe Inner Diameter
Power Connections
Power Supply
Presentation of Measured Data
Rosemount 2210
Process Conditions
Foam
Number of Sensors4-9
Rapid Level Changes 4-9, 6-10
Sensor Mounting Level 1-6 4-9
Turbulent Surface 4-9, 6-10
Process Seal Antenna
Mounting2-22
Product Certifications
See Approvals B-6
PIFE Sealing
Mounting2-14, 2-17

R

Radar Master5-2
Rapid Level Changes 4-9, 6-10
Register Transducer Block
Parameters E-1
Registration of False Echoes 4-13

00809-0100-4024, Rev BA March 2004

Resource Block 8-8, D-1
Block Errors
Detailed Status
Master Reset Method 8-4
ParametersD-2
BLOCK ERR8-8
Summary Status
Write Protection
Rod Antenna
Threaded Version 2-11
Rosemount 2210 7-3
Rosemount 2210 Display Unit . 7-2
Display Setup
Language
Password
Units
User Defined View 7-8
Entering a Password 7-4
Entering Numerical Values 7-6
Installing the Transmitter7-8
Custom Setup 7-10
Guided Setup 7-9
Menu Tree
Operation
Presentation of Measured Data 7-5
Selecting Between Different Alter-
natives
Service 8-2
Softkeys
Viewing Level Data
Single Value
Standard View7-7
Temperature View 7-7
User Defined
View Menu
Rosemount 5600
Rosemount 2210
Custom Setup 7-10
Guided Setup 7-9
Installation

S

Safety Messages 1-1, 2-1
Selecting Between Different Alterna-
tives
Rosemount 2210 7-5
Sensor Bus Mode
Switching6-18
Sensor Bus Port
Configuration
Sensor Mounting Level 1-6 4-9
Service
Rosemount 2210 Display Unit 8-2
Spare Parts
Support 1-9
Service Method

Operation
Setting the Loop to Manual
HART Communicator 5-9
Show Negative Values as Zero . 4-6
Signal Wires
Grounding
Single Value
Rosemount 22107-6
Slow Search
Speed
Solid Products 4-9, 6-10
Specific FCC Requirements 1-6
Standard View
Rosemount 2210 Display Unit 7-7
Still-pipe/Bridle
Mounting
Strapping Table
Volume Calculation4-10
Supported Units6-11
Surface Tracking4-16
Double Bounce Offset 4-17
Double Bounce Possible . 4-17
Double Surface
Level above Min. Distance Possi-
ble4-16
Slow Search 4-16
Slow Search Speed 4-16
Upper Product DC4-16
Symptom
Troubleshooting Table8-2

T Too

lag
Device6-3
Tank Bottom Type4-5
Tank Connection Length4-3
Tank Geometry4-5
Tank Bottom Type4-5
Tank Height
Tank Type 4-5
Tank Height4-5
Tank Type4-5
Temperature Measurement 4-9
Temperature View
Rosemount 22107-7
Threaded Version
Rod Antenna
Transmitter Functions6-1
Troubleshooting
Analog Input (AI) Block8-9
Field Upgrades 8-7
Reference Table 8-1
Resource Block8-8
Table8-2
Turbulent Surface 4-9, 6-10

Rosemount 5600 Series

U

Unit Codes
Level Transducer Block C-7
Units
Rosemount 22107-8
Upper Product DC4-16
User Defined
Rosemount 22107-6
User Defined View

V

View Menu
Rosemount 22107-6
Viewing Level Data
Rosemount 22107-6
Volume Calculation4-10
Ideal Tank
Strapping Table4-10

W

Wiring
Grounding
Intrinsically
Non-Intrinsically
Power Connections3-9
Write Protection
Resource Block8-4
WRITE_LOCK Parameter8-5

X Xe

KD_SCALE	6-11
L_TYPE	
Direct	6-11
Indirect	6-11

Emerson Process Management

Rosemount Inc.

8200 Market Boulevard Chanhassen, MN 55317 USA T (U.S.) 1-800-999-9307 T (International) (952) 906-8888 F (952) 949-7001

www.rosemount.com

Emerson Process Management Heath Place Bognor Regis West Sussex PO22 9SH England Tel 44 (1243) 863 121 Fax 44 (1243) 867 5541

Emerson Process Management Singapore Pte Ltd. 1 Pandan Crescent Singapore 128461 Tel (65) 777-8211 Fax (65) 777-0947

© 2005 Rosemount Inc. All rights reserved.