

PROTEGO® BE/HK-E

Function and Description

The PROTEGO[®] BE/HK-E end-of-line deflagration flame arrester was specifically developed for vessels which are not pressurized and store Ethanol or other alcohols. The combustion of alcohol requires a modified flame arrester element design to provide protection against endurance burning. In addition, the device provides protection against atmospheric deflagration. Main application area is on in - and outbreathing and vent lines, with the goal to prevent flame transmission caused by endurance burning or atmospheric deflagration from propogating into the vessel or plant.

The PROTEGO[®] BE/HK-E consists of a housing (1), a weather hood (2) and the PROTEGO[®] flame arrester unit (3). During normal operation the metal weather hood is in a closed position. If a stabilized flame burns on the flame arrester element surface, the fusible link (5), located in a center position, will melt and let

the spring loaded weather hood move into the open position. The PROTEGO[®] flame arrester unit consists of two FLAME-FILTER[®] discs (4), which are installed in a FLAMEFILTER[®] cage. The PROTEGO[®] BE/HK-E end-of-line deflagration flame arrester is available for alcohols and other substances with MESG \geq 0,85mm.

The standard design can be used for operating temperatures up to +60°C / 140°F.

Type-approved in accordance with the current ATEX Directive and EN ISO 16852 as well as other international standards.

$^{ m)}$ Special Features and Advantages

- endurance burning protection for alcohols and hydrocarbons with MESG ≥ 0,85mm.
- weather hood protects against environmental impact (i.e. weather, bird nests, etc.)
- · weather hood will open and signal the impact of a flame
- · fusible link is resistant against chemicals
- modular design allows replacement of single FLAMEFILTER[®]
- easy maintenance
- protection against atmospheric deflagration and endurance burning
- · modular design results in low spare part cost

Design Types and Specifications

There are two different designs:

End-of-line deflagration flame arrester, basic design	BE/HK-E
End-of-line deflagration flame arrester with heating jacket	BE/HK-E - H

Special designs available on request

Table 1: Dimensions				Dimensions in mm / inches			
To select the nominal size (DN), please use the flow capacity charts on the following pages							
DN	20 / 3⁄4"	25 / 1"	32 / 11⁄4"	40 / 11⁄2"	50 / 2"	65 / 21⁄2"	80 / 3"
а	163 / 6.42	163 / 6.42	163 / 6.42	183 / 7.20	183 / 7.20	218 / 8.58	218 / 8.58
b	180 / 7.09	177 / 6.97	177 / 6.97	190 / 7.48	190 / 7.48	200 / 7.87	200 / 7.87

Dimensions for deflagration flame arrester with heating jacket upon request

Table 2: Selection of explosion group				
MESG	Expl. Gr. (IEC/CEN)	Gas Group (NEC)		
≥ 0,85 mm	IIB1	-	Special approvais upon request	

Table 3: Material selection for housing				
Design	В	С		
Housing	Steel	Stainless Steel	Special materials upon request	
Weather hood	Steel	Stainless Steel	Special materials upon request	
Flame arrester unit	А	A, B		

Table 4: Material combinations of flame arrester unit				
Design	А	В		
FLAMEFILTER [®] cage	Stainless Steel	Stainless Steel	Special materials upon request	
FLAMEFILTER®	Stainless Steel	Hastelloy	Special materials upon request	
Spacer	Stainless Steel	Hastelloy		

Table 5: Flange connection type		
EN 1092-1; Form B1	other types upon request	
ASME B16.5; 150 lbs RFSF		

Flow Capacity Chart

The flow capacity charts have been determined with a calibrated and TÜV certified flow capacity test rig. Volume flow V in (m³/h) and CFH refer to the standard reference conditions of air ISO 6358 (20°C, 1bar). Conversion to other densities and temperatures refer to Vol. 1: "Technical Fundamentals".

for safety and environment