Installation and Operation Manual

TMC4 Modbus RTU Module Single and Dual Channel

Single Channel
TMC-4C005-001

Dual Channel
TMC-4C005-003

1. Overview

The Triac Modbus RTU module is a plug-in option module for use with the TMC4 controller providing communication with the TMC4 control card through Modbus RTU protocol. The module is available in both a single isolated channel, item TMC-4C005-001, and dual isolated channel, item TMC-4C005-003. The dual channel module supports communication via two independent ports under one ID. This dual channel configuration is useful for operating physically redundant networks. Wiring, communication parameters, and best practices are all common between the single and dual channel module operation.

1.1. Features

- Addresses from 1 to 246
- None, Odd or Even parity
- 9600, 19.2k, 57.6k, 115.2k baud rates

1.2. Installation

The TMC4 Modbus module is installed in the TMC4 control board option module slot using (2) 4-40 $\times 1 / 4$ " screws. Insert card edge in the mini PCl express connector and rotate module flat to secure with the screws.

1.3. Wiring

The wiring pinout for each module is shown below.

2. Network

For best results, a RS-485 cable with recommended 120Ω characteristic impedance should be used for network wiring. For the dual channel module, separate RS-485 communication cables must be used for both Network 1 and Network 2 as shown. For single channel module, only Network 1 cabling is required.

A 120Ω termination resistance at master and last slave node on the network is required for best performance. Maximum number of nodes per multi-drop network should be limited to 32 nodes. If greater than 32 nodes are required on a network, repeaters should be utilized.

Polling nodes simultaneously on both ports for a dual channel network should be avoided. A minimum 500 ms polling rate and delay of 20 ms between polls of the same device on both channels is recommended.

NETWORK 1

Maximum 32 nodes per multi-drop network

2.1. Network Topology

The Modbus module should be wired in either a daisy chain topology, or a backbone with stubs for best results. If backbone with stubs topology is used, the length of stubs should be kept as short as possible. Star, ring, or combinations thereof, should be avoided.

2.2. Cable Length

The theoretical maximum cable length for RS-485 network is 1.2 km (3900 feet). This also includes the length of any network stubs used. Maximum cable length decreases as the data rate increases as shown below. Other considerations may decrease actual maximum cable length, such as characteristic impedance mismatch of cable to master.

3. Setup

To operate with Modbus RTU commands, the TMC4 controller must first be configured for Modbus RTU communication. Refer to TMC4 IOM for details.

- Set Command Type in the COMMAND CONFIG submenu to Comms.
- Set Position Type in the POSITION CONFIG submenu to either Limit Switch or Potentiometer depending on if on/off actuation or proportional/modulating actuation.
- If operating as Potentiometer positioning, program the 0% and 100% positions in the Calibrate Close and Calibrate Open setting.
- Set Communication Type in the COMMS CONFIG submenu to Modbus RTU.
- Set unit address, baud rate and parity in the COMMS CONFIG submenu.

4. Operation

4.1. Limit Switch Positioning Operation

When operating with limit switches for on/off or two position control, the TMC4 Position Type setting in the POSITION CONFIG submenu should be set to Limit Switch. When operating in this mode, Bit 1 and Bit 2 in Register 40009 control the actuator direction and movement. The actuator can also be controlled by writing specific values to Register 40010. Bits $1-4$ in Register 40001, provide the feedback information about the travel direction and end of travel position of the actuator. Operating details are provided below.

OPERATION Register 40009, Action Bits/Flags 2		
Bit 2	Bit 1	Description
0	x	De-energize motor outputs and stop actuator.
1	0	Energize motor outputs and drive actuator CW.
1	1	Energize motor outputs and drive actuator CCW.

OPERATION Register 40010, Command Position	
Value	Description
0	Energize motor outputs and drive actuator CW.
500	De-energize motor outputs and stop actuator.
1000	Energize motor outputs and drive actuator CCW.

FEEDBACK
Register 40001, Status Flags 1

Position			Movement		Description	
Bit 4	Bit 3		Bit 2	Bit 1	Position	Movement
0	0		0	0	Between limits	Stopped
0	0		0	1	Between limits	CCW
0	0		1	0	Between limits	CW
0	0		1	1	$?$	$?$
0	1		0	0	CCW limit	Stopped
0	1		0	1	$?$	$?$
0	1		1	0	CCW limit	CW
0	1		1	1	$?$	$?$
1	0		0	0	CW limit	Stopped
1	0		0	1	CW limit	CCW

(1) This state will be present immediately when reversing direction until the position cam disengages the position limit switch. If this state persists, it may indicate jam or obstruction condition.

Note that even though the motor stops when the destination travel limit switch is closed, the motor outputs of the control board remain energized until a stop command is written to Register 40009 or 40010.

In Register 40009, Bit 1 establishes the direction of actuator travel and Bit 2 energizes or de-energizes the motor output corresponding to the direction determined by Bit 1.

If Bit $1=0$, the actuator is set to move in the CW direction. If Bit $1=1$, the actuator is set to move in the CCW direction.
If Bit $2=0$, the motor output is not energized. If Bit $2=1$, the CW motor output is energized when Bit $1=0$ and the CCW motor output is energized when Bit $1=1$. Unless Bit 2 is cleared, the actuator will continue to move in the specified direction until the corresponding end of travel limit switch closes.

It is acceptable to change direction with Bit 1 while maintaining Bit $2=1$. If the direction is changed while the actuator is moving, a short delay occurs before the actuator begins moving in the opposite direction.
Writing values shown in Error! Reference source not found. into Register 40010 will automatically set Bit 1 and Bit 2 in Register 40009 according to the action specified.

CAUTION! When writing to Bit 1 and Bit 2 of Register 40009, be careful not to change the other register bits.
In Register 40001, Bit 1 and Bit 2 indicate the direction of travel. Bit 3 and Bit 4 indicate if the actuator is at the full CCW or full CW limit respectively.

While the actuator is moving in the CW direction, Bit $2=1$. When the actuator reaches the CW end of travel limit switch, Bit $2=0$ and Bit $4=1$. The CW motor output is de-energized.

While the actuator is moving in the CCW direction, Bit $1=1$. When the actuator reaches the CCW end of travel limit switch, Bit $1=0$ and Bit $3=1$. The CCW motor output is de-energized.

4.2. Potentiometer Positioning Operation

When operating with feedback potentiometer for proportional or modulating control, the TMC4 Position Type setting in the POSITION CONFIG submenu should be set to Potentiometer. In this mode, the actuator is controlled using the Command Position Register 40010, and the Sensitivity/Deadband Register 40013. Note, the deadband can also set by the on-board menus. The actual location of the actuator is indicated by the Current Position Register 40008.

When a new command position value is written to Register 40010, the new value is compared to the current position value in Register 40008. If the difference between the two values is greater than the sensitivity/deadband value in Register 40010, the actuator begins moving towards the new command position. When the current position value is within the limits of the command position and sensitivity/deadband value in Register 40010, the actuator is stopped.

Bit 1 and Bit 2 in Register 40001 are also used to indicate the direction of travel. If the actuator is moving in the CW direction, Bit $2=1$. If the actuator is moving in the CCW direction, Bit $1=1$. When the actuator reaches the command position value and is stopped, Bit 1 and Bit 2 will equal 0 .

4.3. Obstruction or Jam Detection

When a move command is given by either setting Bit 1 and Bit 2 in Register 40009, or by writing valid value to Register 40010, a timer is immediately started. The timer continues to increment once every second. After each increment, the timer value is compared to the value set in Register 40011 for the Travel Timeout.

If the destination travel limit switch closes, or the position setpoint is reached before the timer value is greater than the value in Register 40011, the actuator is operating normally.

If the destination travel limit switch IS NOT closed, or the position setpoint is not reached before the timer value is greater than the value in Register 40011, a jam or obstruction has prevented the valve from operating properly. The active motor output is de-energized, and Bit 5 in Register 40001 is set.

5. Modbus

5.1. Function Codes

The TMC4-M module is a Modbus slave that supports the following Modbus functions.

Code	Code (hex)	Code Definition
03	0×03	Read Holding Registers
16	0×10	Write Multiple Registers

Function 03 reads the contents of a contiguous block of holding registers. All registers, 40001-40017 are readable with this function.

Function 16 writes values into a sequence of adjacent holding registers. Only registers, 40009-40017 can be written to with this function.

5.2. Registers

All registers are 16 bits in length. When the register is addressed in the data communications, the register is assigned a hexadecimal value starting with 0×00. Therefore, registers numbered 40001-40017 are addressed as $0-16$ in decimal, or 0×00 to 0×10 in hexadecimal resulting in the register always addressed one value below the specified decimal register number.

Register No.	Register Address	Address Name	16 bit / Digital Name	Unit	Scale	Range	Default	Read / Write
40001	0x00	STATUS FLAGS 1 INT						
		bit 1	CCW Movement	Bit	N/A	True/False	N/A	Read
		bit 2	CW Movement	Bit	N/A	True/False	N/A	Read
		bit 3	CCW Travel Limit	Bit	N/A	True/False	N/A	Read
		bit 4	CW Travel Limit	Bit	N/A	True/False	N/A	Read
		bit 5	Actuator Obstructed	Bit	N/A	True/False	N/A	Read
		bit 6		-	-			
		bit 7	Control Mode	Bit	N/A	True/False	N/A	Read
		bit 8	Operating Mode	Bit	N/A	True/False	N/A	Read
		bit 9-16	-	-	-	-	-	-
40002	0×01	TOTAL POWER ON TIME HI / INTFIRMWARE VERSION						
		bit 1-8	Total Power On Time (Upper Byte)	Hour	1	$\begin{aligned} & 65,536-16,711,680 \\ & (0-16,777,215 \text { when used with } \\ & \text { Register 40003) } \end{aligned}$	0	Read
		bit 9-16	Firmware Version	Int.	1	0-255	N/A	Read
40003	0×02	TOTAL POWER ON TIME LO	INT	Hour	1	$\begin{aligned} & 0-65,535 \\ & (0-16,777,215 \text { when used with } \\ & \text { Register } 40002 \text { bits } 1-8) \end{aligned}$	0	Read

40004	0x03	TOTAL MOTOR RUN TIME HI	INT						
		bit 1-8	Total Motor Run (Upper Byte)	me	unt	1	$\begin{aligned} & 65,536-16,711,680 \\ & (0-16,777,215 \text { when used wi } \\ & \text { Register } 40005 \text {) } \end{aligned}$	$\text { vith } 0$	Read
		bit 9-16	-	-		-	-	-	-
40005	0x04	TOTAL MOTOR RUN TIME LO	INT		unt	1	$\begin{aligned} & 0-65,535 \\ & (0-16,777,215 \text { when used wi } \\ & \text { Register } 40004 \text { bits } 1-8) \end{aligned}$	$\text { vith } 0$	Read
40006	0x05	TOTAL MOTOR STARTS HI	INT						
		bit 1-8	Total Motor (Upper Byte)		Count	1	$\begin{aligned} & 65,536-16,711,680 \\ & (0-16,777,215 \text { when used } \\ & \text { with Register } 40007 \text {) } \end{aligned}$		Read
		bit 9-16	-		-	-	-	-	-
40007	0x06	TOTAL MOTOR STARTS LO	INT		Count	1	$\begin{aligned} & 0-65,535 \\ & (0-16,777,215 \text { when used } \\ & \text { with Register } 40006 \text { bits } 1-8) \end{aligned}$		Read
40008	0x07	CURRENT POSITION	INT		\%	0.1	0-1000	N/A	Read
40009	0x08	ACTION BITS 1 STATUS FLAGS 2	INT						
		bit 1	Direction		Bit	N/A	True/False	N/A	Read / Write
		bit 2	Motor Output		Bit	N/A	True/False	N/A	Read / Write
		bit 3	Reset Actuator		Bit	N/A	True/False	N/A	Read / Write
		bit 4	-		-	-	-	-	-
		bit 5	-	-		-	- -		-
		bit 6		-		-	- -		-
		$\begin{array}{\|l\|} \text { bit } 7 \\ \text { bit } 8 \end{array}$	Fault Action		Bit	N/A	$\begin{aligned} & 0,0-\text { In Place } \\ & 0,1-\text { CCW } \\ & 1,0-\mathrm{CS} \\ & 1,1 \text { - To Position (40017) } \end{aligned}$	0,0	Read / Write
		bit 9	Power Interrupt	Fag	Bit	N/A	True/False	N/A	Read / Write
		bit 10	Reset Flag		Bit	N/A	True/False	N/A	Read / Write
		bit 11	-		-	-	-	-	
		bit 12	Save To EEPRO		Bit	N/A	True/False	N/A	Read / Write
		bit 13	Fault Flag		Bit	N/A	True/False	N/A	Read / Write
		bit 14	-		-	-	-	-	-
		bit 15	-		-	-	-	-	-
		bit 16	-		-	-	-	-	-
40010	0x09	COMMAND POSITION	INT		\%	0.1	$0-1000$ (Modulating) 0,500, 1000 (Limit Switch)	N/A	Read / Write
40011	0x0A	TRAVEL TIMEOUT	INT		sec	1	5-255	60	Read / Write
40012	0x0B	RESERVE	-		-	-	-	-	-
40013	0x0C	SENSITIVITY	INT		\%	0.1	1-25	5	Read / Write
40014	0x0D	COMMUNICATION TIMEOUT	INT		sec	0.01	100-10,000	1000	Read / Write
40015	0x0E	RESERVE	-		-	-	-	-	-
40016	0x0F	RESERVE	-		-	-	-	-	-
40017	0x10	FAULT POSITION	INT		\%	0.1	0-1000	N/A	Read / Write

TMC4 Control Card for Electric Actuators

CONTROLS

Installation \& Maintenance Manual

Status Flags 1 Register

Register Number	40001	Unit	Scale	Range	Default
Register Address	0×00	n / a	n / a	n / a	
Read/Write	R				

The Status Flags 1 register provides flags to indicate various status and operating conditions. The register bits are assigned the functionality provided below.

Bit	Description
Bit 1	CCW Movement bit indicates if the CCW motor output terminal is energized and is used to indicate CCW movement.
Bit 2	CW Movement bit indicates if the CW motor output terminal is energized and is used to indicate CW movement.
Bit 3	CCW Travel Limit bit indicates if the open travel limit switch is closed.
Bit 4	CW Travel Limit bit indicates if the close travel limit switch is closed.
Bit 5	Actuator Obstruction bit indicates if the time set in the Travel Timeout register 40011 has been exceeded before the actuator reaches its appropriate end of travel position.
Bit 6	Not used
Bit 7	Positioning Mode bit indicates if the Position Type in the menus is set to Limit Switch or Potentiometer. Limit Switch is for two position control using limit switches for position feedback. Potentiometer is used for proportional or modulating control using a potentiometer for position feedback.
Bit 8	Operating Mode bit indicates if the controller is in Run mode or Configuration mode. The controller is considered to be in configuration mode when entering into any of the configuration submenus.
Bit 9-16	Not used

Byte 1 (LSB)							
Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1
Operating Mode	Positioning Mode	-	Obstruction	CW Limit	CCW Limit	CW Move	CCW Move
							0: Motor CCW output not on 1: Motor CCW output on

Byte 2 (MSB)							
Bit 16	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9
-	-	-	-	-	-	-	-
n/a							

TMC4 Control Card for Electric Actuators

Total Power On Time / Firmware

Register Number	40002 / 40003	Unit	Scale	Range	Default
Register Address	0x01/0x02	Hour	1	$\begin{gathered} 0-16,777,216 \\ 0 \times 00000000-0 x 00 F F F F F F \end{gathered}$	n/a
Read/Write	R	Version	1	$\begin{gathered} 0-255 \\ 0 \times 00-0 \times F F \end{gathered}$	n/a

40002									40003															
Byte 2 (MSB)	Byte 1 (LSB)								Byte 2 (MSB)								Byte 1 (LSB)							
B16 $\mathrm{B} 15\|\mathrm{~B} 14\| \mathrm{B} 13\|\mathrm{~B} 12\| \mathrm{B} 11\|\mathrm{~B} 10\| \mathrm{B} 9$	B8	B7	B6	B5	B4	B3	B2	B1	B16	B15	B14		B12		B10	B9	B8	B7	B6	B5	B4	B3	B2	B1
Firmware Version	Total Powered On Time																							
0-255	$0-16,777,216$ (hours)																							

The Total Power on Time/Firmware registers store the total time (in hours) the board has been powered on as well as the current version of the firmware. The firmware version is stored in the upper 8 bits of Register 40002. The lower 8 bits of Register 40002 and all 16 bits of Register 40003 contain the 24 -bit value representing the time the board has been powered on, providing for between 0 and 16,777,216 hours. This value resets when board power is removed.

When reading the registers, the 8 bits in Register 40002 represent the most significant bits of the time, while all 16 bits in Register 40003 represent the least significant bits of the time. It is recommended to read both registers with the same command. In order to extract the length of time the board has been powered on, the upper 8 bits of Register 40002 must be masked off. In order to extract the firmware version, the lower 8 bits of Register 40002 must be masked off.

Total Motor Run Time

Register Number	40004 / 40005
Register Address	$0 \times 03 / 0 \times 04$
Read/Write	R

Unit	Scale	Range	Default
Hour	1	$0-16,777,216$	n / a

40004									40005													
Byte 2 (MSB)	Byte 1 (LSB)								Byte 2 (MSB)						Byte 1 (LSB)							
	B8	B7	B6	B5	B4	B3	B2	B1	B16	B15 B14	B13	B12	B11 B10	B9	B8	B7	B6	B5	B4	B3	B2	B1
-										0-16,	777,	216	(hours)									

The Total Motor Run Time registers store the total combined time (in hours) the CW and CCW motor outputs of the board have been energized. The lower 8 bits of Register 40004 and all 16 bits of Register 40005 contain the 24 -bit value, providing for between 0 and 16,777,216 hours. This value resets when board power is removed.

When reading the registers, the 8 bits in Register 40004 represent the most significant bits of the time, while all 16 bits in Register 40005 represent the least significant bits of the time. It is recommended to read both registers with the same command.

TMC4 Control Card for Electric Actuators

Total Motor Starts

Register Number	40006 / 40007
Register Address	$0 \times 05 / 0 \times 06$
Read/Write	R

Unit	Scale	Range	Default
Count	1	$0-16,777,216$	n / a

The Total Motor Starts registers store the total count for number of times the CW and CCW motor outputs of the board have been energized. The lower 8 bits of Register 40006 and all 16 bits of Register 40007 contain the 24 -bit value, providing for between 0 and 16,777,216 total number of starts. This value resets when board power is removed.

When reading the registers, the 8 bits in Register 40006 represent the most significant bits of the count, while all 16 bits in Register 40007 represent the least significant bits of the count. It is recommended to read both registers with the same command.

Current Position

Register Number	40008
Register Address	0×07
Read/Write	R

Unit	Scale	Range	Default
$\%$	0.1	$0-1000$ $0 \times 0000-0 \times 03 E 8$	n / a

The Current Position register is used to track the current actuator position in potentiometer positioning using a feedback potentiometer. The range is automatically scaled based on the calibrated 0% and 100% positions.

The values in the register span from 0 to 1000, which corresponds to 0.0% and 100.0% respectively. With 0.0% representing a fully closed actuator, and 100.0% representing a fully open actuator, a value of 674 represents the actuators is 67.4% open.

TMC4 Control Card for Electric Actuators

CONTROLS

Installation \& Maintenance Manual
Action Bits/Flags 2 Register

Register Number	40009
Register Address	0×08
Read/Write	R / W

Unit	Scale	Range	Default
n / a	n / a	n / a	n / a

40009									
Byte 2 (MSB)			Byte 1 (LSB)						
B 16	B 15	B 14	B 13	B 12	B 11	B 10	B 9	B 8	B 7

The Action Bits/Flags 2 register provides individual bits for multiple operation settings as well as resettable flags used to indicate various status changes.

Bit	Description
Bit 1	Direction bit sets the direction to move the actuator when using limit switch positioning. Use this bit with Bit 2 to move the actuator in on/off applications. The status of this bit determines which motor output is energized when Bit 2 is set.
Bit 2	Output Status bit energizes the motor output determined by Bit 1. Set the desired travel direction with Bit 1 and either turn on or off the motor output with this bit.
Bit 3	Reset bit resets registers 40001 (bits 1-6), 40009 (bits 1-4), 40010.
Bit 4-6	Not used
Bit 7 \& 8	Fault Action bits determine the movement when the time between communication exceeds the Communication Timeout value in Register 40014. This can also be configured in the on-board menus.
Bit 9-16	Not used

Byte 2 (MSB)							
Bit 16	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9
-	-	-	-	-	-	-	-
n/a							

Command Position

Register Number	40010	Unit	Scale	Range	Default
Register Address	0×09	$\%$	0.1	$0-1000$ $(32,768-33,768)$ $0 \times 0000-0 \times 03 E 8$ $(0 \times 8000-0 \times 83 E 8)$	n / a

40010																	
Byte 2 (MSB)									Byte 1 (LSB)								
B16	B15	B14	\|B13	13 B12	B11	1 B10	B9		B8	B7	B6	B5	B4	B3	B2		B1
0-1000																	
0.0\% to 100.0\%																	

If a value outside of the acceptable range of 0 to 1000 is written, the actuator will not move. When control board has power applied, or is reset using Bit 3 in Register 40009, Bit 16 is set to 1 resulting in a value of 32,768 added to the value currently in the register. Setting Bit 16 forces the Command Position register value outside of the acceptable 0 to 1000 range and therefore prevents the actuator from moving. The actuator can be controlled again by writing another value between 0 and 1000.

The Command Position register is used to initiate an actuator move. When the board is configured for potentiometer positioning, the values span from 0 to 1000 , corresponding to 0.0% and 100.0% respectively. Therefore, with 0.0% representing a fully closed actuator, and 100.0% representing a fully open actuator, a written value of 674 indicates a command to move the actuator to 67.4% open.

When the board is set to limit switch positioning, a 0 will move the actuator CW, a 500 will stop the actuator, and 1000 will move the actuator CCW.

Value	Description	Register 40009 bit equivalent
0	Energize motor outputs and drive actuator CW.	Bit $1=0$, Bit $2=1$
500	De-energize motor outputs and stop actuator.	Bit $1=x$, Bit $2=0$
1000	Energize motor outputs and drive actuator CCW.	Bit $1=1$, Bit $2=1$

Travel Timeout

Register Number	40011	Unit	Scale	Range	Default
Register Address	$0 \times 0 \mathrm{~A}$	Second	1	$5-255$	60
Read/Write	R/W				

The Travel Timeout register is to determine a stall or obstruction condition identified by Bit 5 in Register 40001. The value stored in this register represents the maximum time allowed between energizing a motor output and reaching the command position or limit before identifying an obstruction. This value should typically be set greater than the normal travel time of the actuator from full open to full close.

Values in this register can be between 5 and 255 with each integer representing 1 second. The default value is set to 60 representing a time of 60 seconds.

TMC4 Control Card for Electric Actuators

Reserved

Register Number	40012
Register Address	$0 \times 0 \mathrm{~B}$
Read/Write	R / W

Unit	Scale	Range	Default
n / a	n / a	n / a	n / a

This register is currently not used.

Sensitivity/Deadband

Register Number	40013	Unit	Scale	Range	Default
Register Address	0x0C	\%	0.1	$\begin{gathered} \hline 1-25 \\ 0 \times 0001-0 \times 0019 \end{gathered}$	5
Read/Write	R / W				

The Sensitivity/Deadband register stores the necessary change between the value written to Register 40010 and the current value in Register 40008 before an actuator movement is initiated. It also represents the range outside of the setpoint the actuator will stop.

Values in this register can be between 1 and 25 with each integer representing 0.1%. The default value is set to 5 representing 0.5%. Using the default value of 0.5%, if the actuator position is at 50.0%, indicated by a value of 500 in Register 40008, the value written to Register 40010 must be greater than 505 or less than 495.

Communication Timeout

Register Number	40014	Unit	Scale	Range	Default
Register Address	$0 \times 0 \mathrm{D}$	$100-10,000$ $0 \times 0064-0 \times 2710$	1000		
Read/Write	R / W				

40014									
Byte 2 (MSB)		Byte 1 (LSB)							
B16 ${ }^{\text {B15 }}$ \| $\mathrm{B} 14 \mid \mathrm{B} 13$	B12 B11 B10 B9	B8	B7	B6	B5	B4	B3	B2	B1
100-10,000									
0.1 Seconds to 100 Seconds									

The Communication Timeout register stores the maximum time allowed with no communication received from the master device before entering a fault condition. When this time is exceeded, the actuator will move to the position set by Bit 7 and Bit 8 in Register 40009. The master should communicate with each actuator on the bus within the time set in this register. Doing so will ensure the actuator moves to the fault position determined by Bit 7 and Bit 8 in Register 40009 only when an unintended lapse in communication is encountered.

Values in this register can be between 100 and 10,000 with each integer representing 0.01 seconds. The default value is set to 1000 representing 10 seconds.

TMC4 Control Card for Electric Actuators

CONTROLS

Reserved

Register Number	40015
Register Address	$0 \times 0 \mathrm{E}$
Read/Write	R / W

Unit	Scale	Range	Default
n / a	n / a	n / a	n / a

This register is currently not used.

Reserved

Register Number	40016
Register Address	$0 \times 0 \mathrm{~F}$
Read/Write	R / W

Unit	Scale	Range	Default
n/a	n / a	n / a	n / a

This register is currently not used.

Fault Position

Register Number	40017				Unit				Scale	Range	Default
Register Address	0x10				\%				0.01	$\begin{gathered} 0-1000 \\ 0 \times 0000-0 \times 03 E 8 \end{gathered}$	n/a
Read/Write	R / W										
40017											
Byte 2 (MSB)		Byte 1 (LSB)									
	B10 ${ }^{\text {B9 }}$	B8 ${ }^{\text {B7 }}$	B6	B5	B4	B3	B2	B1			
0-1000											
0.0\% to 100.0\%											

The Fault Position register is used in potentiometer positioning to set a position to move the actuator for a fault condition. The values in the register span from 0 to 1000 , which corresponds to 0.0% and 100.0% respectively. With 0.0% representing a fully closed actuator, and 100.0% representing a fully open actuator, a value of 674 represents the actuator will fail to the 67.4\% open position either from fault condition.

Failing to the position specified in this register when a fault condition occurs is achieved by setting both Bit 7 and Bit 8 in Register 40009 high.

Appendix A

Number System Conversion

DEC	OCT	HEX	BIN												
0	000	00	00000000	16	020	10	00010000	32	040	20	00100000	48	060	30	00110000
1	001	01	00000001	17	021	11	00010001	33	041	21	00100001	49	061	31	00110001
2	002	02	00000010	18	022	12	00010010	34	042	22	00100010	50	062	32	00110010
3	003	03	00000011	19	023	13	00010011	35	043	23	00100011	51	063	33	00110011
4	004	04	00000100	20	024	14	00010100	36	044	24	00100100	52	064	34	00110100
5	005	05	00000101	21	025	15	00010101	37	045	25	00100101	53	065	35	00110101
6	006	06	00000110	22	026	16	00010110	38	046	26	00100110	54	066	36	00110110
7	007	07	00000111	23	027	17	00010111	39	047	27	00100111	55	067	37	00110111
8	010	08	00001000	24	030	18	00011000	40	050	28	00101000	56	070	38	00111000
9	011	09	00001001	25	031	19	00011001	41	051	29	00101001	57	071	39	00111001
10	012	OA	00001010	26	032	1A	00011010	42	052	2A	00101010	58	072	3A	00111010
11	013	OB	00001011	27	033	1B	00011011	43	053	2B	00101011	59	073	3B	00111011
12	014	OC	00001100	28	034	1 C	00011100	44	054	2C	00101100	60	074	3 C	00111100
13	015	OD	00001101	29	035	1D	00011101	45	055	2D	00101101	61	075	3D	00111101
14	016	OE	00001110	30	036	1E	00011110	46	056	2E	00101110	62	076	3E	00111110
15	017	OF	00001111	31	037	1F	00011111	47	057	2F	00101111	63	077	3 F	00111111
64	100	40	01000000	80	120	50	01010000	96	140	60	01100000	112	160	70	01110000
65	101	41	01000001	81	121	51	01010001	97	141	61	01100001	113	161	71	01110001
66	102	42	01000010	82	122	52	01010010	98	142	62	01100010	114	162	72	01110010
67	103	43	01000011	83	123	53	01010011	99	143	63	01100011	115	163	73	01110011
68	104	44	01000100	84	124	54	01010100	100	144	64	01100100	116	164	74	01110100
69	105	45	01000101	85	125	55	01010101	101	145	65	01100101	117	165	75	01110101
70	106	46	01000110	86	126	56	01010110	102	146	66	01100110	118	166	76	01110110
71	107	47	01000111	87	127	57	01010111	103	147	67	01100111	119	167	77	01110111
72	110	48	01001000	88	130	58	01011000	104	150	68	01101000	120	170	78	01111000
73	111	49	01001001	89	131	59	01011001	105	151	69	01101001	121	171	79	01111001
74	112	4A	01001010	90	132	5A	01011010	106	152	6A	01101010	122	172	7A	01111010
75	113	4B	01001011	91	133	5B	01011011	107	153	6B	01101011	123	173	7B	01111011
76	114	4C	01001100	92	134	5 C	01011100	108	154	6C	01101100	124	174	7 C	01111100
77	115	4D	01001101	93	135	5D	01011101	109	155	6D	01101101	125	175	7D	01111101
78	116	4 E	01001110	94	136	5E	01011110	110	156	6E	01101110	126	176	7E	01111110
79	117	4 F	01001111	95	137	5F	01011111	111	157	6F	01101111	127	177	7F	01111111

TMC4 Control Card for Electric Actuators
CONTROLS
Installation \& Maintenance Manual

DEC	OCT	HEX	BIN	DEC	OCT	HEX	BIN	DEC	OCT	HEX	BIN		DEC	OCT	HEX	BIN
128	200	80	10000000	144	220	90	10010000	160	240	A0	1010	0000	176	260	B0	10110000
129	201	81	10000001	145	221	91	10010001	161	241	A1	1010	0001	177	261	B1	10110001
130	202	82	10000010	146	222	92	10010010	162	242	A2	1010	0010	178	262	B2	10110010
131	203	83	10000011	147	223	93	10010011	163	243	A3	1010	0011	179	263	B3	10110011
132	204	84	10000100	148	224	94	10010100	164	244	A4	1010	0100	180	264	B4	10110100
133	205	85	10000101	149	225	95	10010101	165	245	A5	1010	0101	181	265	B5	10110101
134	206	86	10000110	150	226	96	10010110	166	246	A6	1010	0110	182	266	B6	10110110
135	207	87	10000111	151	227	97	10010111	167	247	A7	1010	0111	183	267	B7	10110111
136	210	88	10001000	152	230	98	10011000	168	250	A8	1010	1000	184	270	B8	10111000
137	211	89	10001001	153	231	99	10011001	169	251	A9	1010	1001	185	271	B9	10111001
138	212	8A	10001010	154	232	9A	10011010	170	252	AA	1010	1010	186	272	BA	10111010
139	213	8B	10001011	155	233	9B	10011011	171	253	AB	1010	1011	187	273	BB	10111011
140	214	8C	10001100	156	234	9 C	10011100	172	254	AC	1010	1100	188	274	BC	10111100
141	215	8D	10001101	157	235	9 D	10011101	173	255	AD	1010	1101	189	275	BD	10111101
142	216	8E	10001110	158	236	9 E	10011110	174	256	AE	1010	1110	190	276	BE	10111110
143	217	8F	10001111	159	237	9 F	10011111	175	257	AF	1010	1111	191	277	BF	10111111
192	300	C0	11000000	208	320	Do	11010000	224	340	EO	1110	0000	240	360	FO	11110000
193	301	C1	11000001	209	321	D1	11010001	225	341	E1	1110	0001	241	361	F1	11110001
194	302	C2	11000010	210	322	D2	11010010	226	342	E2	1110	0010	242	362	F2	11110010
195	303	C3	11000011	211	323	D3	11010011	227	343	E3	1110	0011	243	363	F3	11110011
196	304	C4	11000100	212	324	D4	11010100	228	344	E4	1110	0100	244	364	F4	11110100
197	305	C5	11000101	213	325	D5	11010101	229	345	E5	1110	0101	245	365	F5	11110101
198	306	C6	11000110	214	326	D6	11010110	230	346	E6	1110	0110	246	366	F6	11110110
199	307	C7	11000111	215	327	D7	11010111	231	347	E7	1110	0111	247	367	F7	11110111
200	310	C8	11001000	216	330	D8	11011000	232	350	E8	1110	1000	248	370	F8	11111000
201	311	C9	11001001	217	331	D9	11011001	233	351	E9	1110	1001	249	371	F9	11111001
202	312	CA	11001010	218	332	DA	11011010	234	352	EA	1110	1010	250	372	FA	11111010
203	313	CB	11001011	219	333	DB	11011011	235	353	EB	1110	1011	251	373	FB	11111011
204	314	CC	11001100	220	334	DC	11011100	236	354	EC	1110	1100	252	374	FC	11111100
205	315	CD	11001101	221	335	DD	11011101	237	355	ED	1110	1101	253	375	FD	11111101
206	316	CE	11001110	222	336	DE	11011110	238	356	EE	1110	1110	254	376	FE	11111110
207	317	CF	11001111	223	337	DF	11011111	239	357	EF	1110	1111	255	377	FF	11111111

A-T Controls product, when properly selected, is designed to perform its intended function safely during its useful life. However, the purchaser or user of A-T Controls products should be aware that A-T Controls products might be used in numerous applications under a wide variety of industrial service conditions. Although A-T Controls can provide general guidelines, it cannot provide specific data and warnings for all possible applications. The purchaser / user must therefore assume the ultimate responsibility for the proper sizing and selection, installation, operation, and maintenance of $A-T$ Controls products. The user should read and understand the installation operation maintenance (IOM) instructions included with the product and train its employees and contractors in the safe use of A-T Controls products in connection with the specific application.

While the information and specifications contained in this literature are believed to be accurate, they are supplied for informative purposes only. Because A-T Controls is continually improving and upgrading its product design, the specifications, dimensions and information contained in this literature are subject to change without notice. Should any question arise concerning these specifications, the purchaser/user should contact A-T Controls.

For product specifications go to http://download.a-tcontrols.com/
A-T Controls, Inc. • 9955 International Boulevard, Cincinnati, OH 45246 • Phone: (513) 530-5175 • Fax: (513) 247-5462• www.atcontrols.com

